Volume 15, Issue 1 (Winter & Spring 2018)                   ASJ 2018, 15(1): 19-24 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ramezani Nowrozani F. Studying Renal Artery Bifurcation Structure in Male Dogs. ASJ 2018; 15 (1) :19-24
URL: http://anatomyjournal.ir/article-1-179-en.html
Department of Basic Sciences, Faculty of Veterinary Medicine, Kazeroon Branch, Islamic Azad University, Kazeroon, Iran.
Abstract:   (4482 Views)

Introduction: Arteries are made up three layers; tunica intima, tunica media, and tunica adventitia. However, in some part of the artery this structure may change. The greatest change occurs at the junctions and bifurcations. In this regard, we decided to study the renal artery bifurcation just where the renal arteries divide into smaller arteries before entering the kidney.
Methods: The structure of renal artery bifurcation was assessed in six normal male dogs by light microscopy. Also the thickness of the tunica intima, tunica media, and tunica adventitia before and after bifurcation area was measured. 
Results: Tunica intima cannot be seen in this area and tunica media in one side and tunica adventitia in other side were very thick. It seems that division of renal artery happens with the penetration of tunica adventitia in one side and tunica media in the other side.
Conclusion: In this area, the artery has thick tunica media on one side and thick tunica adventitia on the other side and these differences were significant. The circular and longitudinal smooth muscle cells can be seen in renal artery bifurcation. These structures may be due to function of this area to maintain and control blood pressure and prevent artery from bursting and dilation.

Full-Text [PDF 573 kb]   (1480 Downloads) |   |   Full-Text (HTML)  (2096 Views)  
Type of Study: Original | Subject: Gross Anatomy
Received: 2016/05/22 | Accepted: 2017/08/27 | Published: 2018/01/1

1. Saez P, Garcia, Pena E, Gasser TC, Martinez MA. Microstructural quantification of collagen fiber orientations and its integration in constitutive modeling of the porcine carotid artery. Acta Biomaterialia. 2016; 33:183-193. doi: org/10.1016/j.actbio.2016.01.030
2. Junqueira LC, Carneiro J, Kelly RO. Basic histology (text and atlas). 11th edition. New York: McGraw-Hill; 2005. [PMCID]
3. Baardwijk C, Barwick SE, Roach MR. Organization of medial elastin at aortic junction in sheep and lambs. Canadian Journal of Physiology and Pharmacology. 1985; 63(7):855-862. doi: 10.1139/y85-140 10.1139/y85-140 [DOI:10.1139/y85-140]
4. Janzen J, Lanzer P, Rothenberger-Janzen K, Vuong PN. The transitional zone in the tunica media of renal arteries has a maximal length of 10 millimeters. Vasa. 2000; 29(3):168-172. doi: 10.1024/0301-1526.29.3.168 [DOI:10.1024/0301-1526.29.3.168]
5. Osborn-Pellegrin M. Some ultrastructural of the renal artery and abdominal aorta in the rat. Journal of Anatomy. 1978; 25(pt 3): 641-652. PMCID: PMC1235630
6. Janzen J, Lanzer P, Rothenberger-Janzen K, Vuong PN. Variable extension of the transitional zone in the medial structure of carotid artery tripod. Vasa. 2001; 30(2):101-106. doi: 10.1024/0301-1526.30.2.101 [DOI:10.1024/0301-1526.30.2.101]
7. Roach MR. The structure and elastic properties of arterial junction. Connective Tissue Research. 1987; 15(1-2):77-84. doi: 10.3109/03008208609001976 [DOI:10.3109/03008208609001976]
8. Ramezani Nowrozani F. Structure of the orifice of the renal artery in the abdominal aorta in adult male dog. Iranian Journal of Veterinary Research. 2011; 12(1):67-72. doi: 10.22099/ijvr.2011.44
9. Van Baardwijk C, Barwick SE, Roach MR. Organization of medial elastin at aortic junction in sheep and lambs. Canadian Journal of Physiology and Pharmacology. 1985; 63(7):855-862. doi: 10.1139/y85-140 [DOI:10.1139/y85-140]
10. Rees PM. Electron microscopical observations on the architecture of the carotid arterial walls. With special reference to the sinus portion. Journal of Anatomy. 1968; 103(pt 1): 33-47. PMCID: PMC1231873
11. Yadav A, Yadav M, Dixit A. A research on the Incidence of renal vessel arrangement at hilum of kidney. Scholars Journal of Applied Medical Sciences. 2014; 2(5C):1715-1716.
12. Lacolley P, Regnault V, Nicoletti A, Li Z, Michel JB. The vascular smooth muscle cell in arterial pathology: A cell that can take on multiple roles. Cardiovascular Research. 2012; 95(2):194-204. doi: 10.1093/cvr/cvs135. [DOI:10.1093/cvr/cvs135]
13. Brozovich FV, Nicholson CG, Degen CV, Gao YZ, Aggarwal M, Morgan KG. Mechanisms of Vascular Smooth Muscle Contraction and the Basis for Pharmacologic Treatment of Smooth Muscle Disorders. Pharmacological Reviews. 2016; 68(2):476–532. doi: 10.1124/pr.115.010652. [DOI:10.1124/pr.115.010652]
14. Shakuntala Rao N, Sujatha K, Meera K, Krishna Rao HR. A comparative study on the struc ture and functionsof aorta in man and ruminant animals. International Journal of Anatomy and Research. 2016; 4(4):3194-98. doi: http://dx.doi.org/10.16965/ijar.2016.437 [DOI:10.16965/ijar.2016.437]
15. Faury G. Role of elastin in the development of the vascular function. Knock-out study of the elastin gene in mice. Journal of the Society of Biology. 2001; 195(2):151–156. doi: 10.1051/jbio/2001195020151 [DOI:10.1051/jbio/2001195020151]
16. Ushiki T. Collagen fibers, reticular fibers and elastic fibers. A comprehensive understanding from a morphological viewpoint. Archives of Histology and Cytology. 2002; 65(2):109–126. doi: 10.1679/aohc.65.109 [DOI:10.1679/aohc.65.109]
17. Lannoy M, Slove S, Jacob MP. The function of elastic fibers in the arteries: Beyond elasticity. Pathologie Biologie. 2014; 62(2):79-83. doi: 10.1016/j.patbio.2014.02.011. [DOI:10.1016/j.patbio.2014.02.011]
18. Berillis P. The Role of Collagen in the Aorta's Structure. The Open Circulation and Vascular Journal. 2013; 6(1):1-8. [DOI:10.2174/1877382601306010001]
19. Utako Yokoyama U, Tonooka Y, Koretake R, Akimoto T, Gonda Y, Saito J, et al. Arterial graft with elastic layer structure grown from cells. Scientific Reports 7. 2017; 140(2017). doi: 10.1038/s41598-017-00237-1. [DOI:10.1038/s41598-017-00237-1]
20. Burton AC. Relation of structure to function of the tissues of the wall of blood vessels. Physiological Reviews. 1954; 34(4):619–642. doi: 10.1152/physrev.1954.34.4.619 [DOI:10.1152/physrev.1954.34.4.619]
21. Janzen J. The microscopic transitional zone between elastic and muscular arteries. Archives Des Maladies Du Coeur Et Des Vaisseaux. 2004; 97(9):909-914. PMID: 15521485 [PMID]
22. Kimani JK. Structural organization of the vertebral artery in the giraffe (Giraffa camelopardalis). The Anatomical Record. 1986; 217(3):256-262. doi: 10.1002/ar.1092170306 [DOI:10.1002/ar.1092170306]
23. Van Son JA, Smedts FT, Wilde PC, Pijls NH, Wong-Alcala L, Kubat K, et al. Histological study of the internal mammary artery with emphasis on its suitability as a coronary artery bypass graft. The Annals of Thoracic Surgery. 1993; 55(1):106-113. doi: 10.1016/0003-4975(93)90483-x [DOI:10.1016/0003-4975(93)90483-X]
24. Majesky MV, Dong XR, Hoglund V, William M, Mahoney Jr, Daum G. The adventitia: a progenitor cell niche for the vessel wall. Cells Tissues Organs. 2012; 195(1-2):73-81. doi: 10.1159/000331413. [DOI:10.1159/000331413]
25. Wagenseil J, Mecham, RP. Vascular Extracellular Matrix and Arterial Mechanics. Physiological Reviews. 2009; 89(3):957–989. doi: 10.1152/physrev.00041.2008. [DOI:10.1152/physrev.00041.2008]
26. Fourman JD, Moffat D. The blood vessels of the kidney. Edinburgh: Blackwell; 1971. [PMID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.