Volume 14, Issue 1 (Winter & Spring 2017)                   ASJ 2017, 14(1): 43-50 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nasiri F, Johari B, Amiri F, Habibi Roudkenar M, Molaei S, Bahadori M, et al . H2O2-Preconditioned Umbilical Cord-Derived Mesenchymal Stem Cells Ameliorate Liver Regeneration in Acute Liver Failure-Induced Mice. ASJ 2017; 14 (1) :43-50
URL: http://anatomyjournal.ir/article-1-187-en.html
1- Department of Biochemistry, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
2- Department of Biotechnology, Pasteur Institute of Iran, Tehran, Iran.
3- Department of Biochemistry, School of Medicine, Qom University of Medical Sciences, Qom, Iran.
4- Department of Anatomy, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
Abstract:   (4437 Views)

Introduction: Mesenchymal stem cells (MSCs) are suitable candidates for the treatment of liver diseases. However, their low survival rate limits their efficacy following transplantation. This study aimed to evaluate the therapeutic potentials of H2O2-preconditioned umbilical cord-derived MSCs (UCMSCs) on acute liver failure (ALF) in mice.
Methods: UCMSCs were pre-conditioned with different concentrations of H2O2. Cell viability was evaluated by WST-1 (water soluble tetrazolium) assay followed by exposure to lethal doses of H2O2. ALF was induced in NMRI mice using CCl4 and the cells therapy was performed using H2O2-preconditioned and normal UCMSCs. After 24, 48, and 72 hours, regenerative potentials of different UCMSCs groups were evaluated compared to sham group (that receive no MSCs) using biochemical and histological methods. 
Results: Lower liver enzymes was significantly evident in mice transplanted with H2O2-preconditioned UCMSCs compared with the other groups. Interestingly, histological results revealed a significant improvement in liver regeneration in these mice.
Conclusion: Preconditioning of UCMSCs with H2O2 not only enhances their survival but also increases the efficacy of MSCs-based cell therapy in acute liver failure.

Full-Text [PDF 548 kb]   (812 Downloads)    
Type of Study: Original |
Received: 2016/02/12 | Accepted: 2016/09/30 | Published: 2017/01/1

References
1. Fazliana M. Studies on Labisia pumila var. alata extract with phytoestrogenic effects: Impact on biological activities and gene expression. Solna: Institute For Molecular Medicine and Surgery/ Department of Molecular Medicine and Surgery; 2010.
2. Nejak-Bowen KN, Monga SPS. Beta-catenin signaling, liver regeneration and hepatocellular cancer: Sorting the good from the bad. Seminars in Cancer Biology. 2011; 21(1):44–58. doi: 10.1016/j.semcancer.2010.12.010. [DOI:10.1016/j.semcancer.2010.12.010]
3. Sell S. Heterogeneity and plasticity of hepatocyte lineage cells. Hepatology. 2001; 33(3):738–50. doi: 10.1053/jhep.2001.21900 [DOI:10.1053/jhep.2001.21900]
4. Duncan AW, Dorrell C, Grompe M. Stem cells and liver regeneration. Gastroenterology. 2009; 137(2):466–81. doi: 10.1053/j.gastro.2009.05.044 [DOI:10.1053/j.gastro.2009.05.044]
5. Chiang CH, Chang CC, Huang HC, Chen YJ, Tsai PH, Jeng SY, et al. Investigation of hepatoprotective activity of induced pluripotent stem cells in the mouse model of liver injury. Journal of Biomedicine and Biotechnology. 2011; 1–11. doi: 10.1155/2011/219060 [DOI:10.1155/2011/219060]
6. Kelly JH, Koussayer T, He D-E, Chong MG, Shang TA, Whisennand HH, et al. An improved model of acetaminophen-induced fulminant hepatic failure in dogs. Hepatology. 1992; 15(2):329–35. doi: 10.1002/hep.184015022.
7. Palmes D, Spiegel H-U. Animal models of liver regeneration. Biomaterials. 2004; 25(9):1601–11. doi: 10.1016/s0142-9612(03)00508-8 [DOI:10.1016/S0142-9612(03)00508-8]
8. Braude S, Gimson AES, Williams R. Progress in the management of fulminant hepatic failure. Intensive Care Medicine. 1981; 7(3):101–3. doi: 10.1007/bf01738610 [DOI:10.1007/BF01738610]
9. Boyer TD, Sanyal AJ, Terrault NA, Lindor KD. Zakim and Boyer's hepatology: A textbook of liver disease e-book. Amsterdam: Elsevier Health Sciences; 2016.
10. Alimoghaddam K, Mohamadnejad M, Bagheri M, Bashtar M, Ghannati H, Bonab MM, et al. Phase 1 human trial of autologous mesenchymal stem cell transplantation for the treatment of decompensated cirrhosis. Blood. 2007; 110(11):4864.
11. Nikeghbalian S, Rasekhi A, Hosseini-Asl SM, Ramzi M, Kakaei F, Malekzadeh R, et al. [Autologous transplantation of bone marrow-derived mononuclear and CD133^ sup+^ cells in patients with decompensated cirrhosis (Persian)]. Archives of Iranian Medicine. 2011; 14(1):12-7. doi: 011141/AIM.004.
12. Jin SZ, Liu BR, Xu J, Gao FL, Hu ZJ, Wang XH, et al. Ex vivo-expanded bone marrow stem cells home to the liver and ameliorate functional recovery in a mouse model of acute hepatic injury. Hepatobiliary & Pancreatic Diseases International. 2012; 11(1):66–73. doi: 10.1016/s1499-3872(11)60127-6 [DOI:10.1016/S1499-3872(11)60127-6]
13. Zhang S, Chen L, Liu T, Zhang B, Xiang D, Wang Z, et al. Human umbilical cord matrix stem cells efficiently rescue acute liver failure through paracrine effects rather than hepatic differentiation. Tissue Engineering Part A. 2012; 18(13-14):1352–64. doi: 10.1089/ten.tea.2011.0516 [DOI:10.1089/ten.tea.2011.0516]
14. Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L, et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nature Medicine. 2000; 6(11):1229–34. doi: 10.1038/81326 [DOI:10.1038/81326]
15. Prasajak P. Mesenchymal stem cells: Current clinical applications and therapeutic potential in liver diseases. Journal of Bone Marrow Research. 2014; 2(1). doi: 10.4172/2329-8820.1000137 [DOI:10.4172/2329-8820.1000137]
16. Domínguez-Bendala J, Lanzoni G, Inverardi L, Ricordi C. Concise review: Mesenchymal stem cells for diabetes. Stem Cells Translational Medicine. 2011; 1(1):59–63. doi: 10.5966/sctm.2011-0017 [DOI:10.5966/sctm.2011-0017]
17. Wei H, Li Z, Hu S, Chen X, Cong X. Apoptosis of mesenchymal stem cells induced by hydrogen peroxide concerns both endoplasmic reticulum stress and mitochondrial death pathway through regulation of caspases, p38 and JNK. Journal of Cellular Biochemistry. 2010; 111(4):967–78. doi: 10.1002/jcb.22785 [DOI:10.1002/jcb.22785]
18. Robey TE, Saiget MK, Reinecke H, Murry CE. Systems approaches to preventing transplanted cell death in cardiac repair. Journal of Molecular and Cellular Cardiology. 2008; 45(4):567–81. doi: 10.1016/j.yjmcc.2008.03.009 [DOI:10.1016/j.yjmcc.2008.03.009]
19. Amiri F, Jahanian-Najafabadi A, Roudkenar MH. [In vitro augmentation of mesenchymal stem cells viability in stressful microenvironments (Persian)]. Cell Stress and Chaperones. 2014; 20(2):237–51. doi: 10.1007/s12192-014-0560-1 [DOI:10.1007/s12192-014-0560-1]
20. Amiri F, Halabian R, Salimian M, Shokrgozar MA, Soleimani M, Jahanian-Najafabadi A, et al. [Induction of multipotency in umbilical cord-derived mesenchymal stem cells cultivated under suspension conditions (Persian)]. Cell Stress and Chaperones. 2014; 19(5):657–66. doi: 10.1007/s12192-014-0491-x [DOI:10.1007/s12192-014-0491-x]
21. Bashiri Nahanji H, Habibi Roudkenar M, Halabian R, Jalili M, Jalili M. [Enhancement of the resistance of mesenchymal stem cells against killing conditions by the oxidative preconditioning (Persian)]. Scientific Journal of Iranian Blood Transfusion Organization. 2013; 10(3):256-266.
22. Amiri F, Molaei S, Bahadori M, Nasiri F, Deyhim MR, Jalili MA, et al. [Autophagy-modulated human bone marrow-derived mesenchymal stem cells accelerate liver restoration in mouse models of acute liver failure (Persian)]. Iranian Biomedical Journal. 2016; 20(3):135-44. PMCID: PMC4949977 [PMID] [PMCID]
23. Shakil AO, Kramer D, Mazariegos GV, Fung JJ, Rakela J. Acute liver failure: Clinical features, outcome analysis, and applicability of prognostic criteria. Liver Transplantation. 2000; 6(2):163–9. doi: 10.1002/lt.500060218 [DOI:10.1002/lt.500060218]
24. Cho KA, Ju SY, Cho SJ, Jung YJ, Woo SY, Seoh JY, et al. Mesenchymal stem cells showed the highest potential for the regeneration of injured liver tissue compared with other subpopulations of the bone marrow. Cell Biology International. 2009; 33(7):772–7. doi: 10.1016/j.cellbi.2009.04.023 [DOI:10.1016/j.cellbi.2009.04.023]
25. Hong ZF, Huang XJ, Yin ZY, Zhao WX, Wang XM. Immunosuppressive function of bone marrow mesenchymal stem cells on acute rejection of liver allografts in rats. Transplantation Proceedings. 2009; 41(1):403–9. doi: 10.1016/j.transproceed.2008.10.020 [DOI:10.1016/j.transproceed.2008.10.020]
26. Moslem M, Valojerdi MR, Pournasr B, Muhammadnejad A, Baharvand H. [Therapeutic potential of human induced pluripotent stem cell-derived mesenchymal stem cells in mice with lethal fulminant hepatic failure (Persian)]. Cell Transplantation. 2013; 22(10):1785–99. doi: 10.3727/096368912x662462 [DOI:10.3727/096368912X662462]
27. Lu LL, Liu YJ, Yang SG, Zhao QJ, Wang X, Gong W, et al. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica. 2006; 91(8):1017-26. PMID: 16870554 [PMID]
28. Tang XQ, Feng JQ, Chen J, Chen PX, Zhi JL, Cui Y, et al. Protection of oxidative preconditioning against apoptosis induced by H2O2 in PC12 cells: Mechanisms via MMP, ROS, and Bcl-2. Brain Research. 2005; 1057(1-2):57–64. doi: 10.1016/j.brainres.2005.07.072 [DOI:10.1016/j.brainres.2005.07.072]
29. Li S, Deng Y, Feng J, Ye W. Oxidative preconditioning promotes bone marrow mesenchymal stem cells migration and prevents apoptosis. Cell Biology International. 2009; 33(3):411–8. doi: 10.1016/j.cellbi.2009.01.012 [DOI:10.1016/j.cellbi.2009.01.012]
30. Nasiri F, Amiri F, Mohammadipour M, Molaei S, Habibi Roudkenar M, Jalili MA. [H2O2-preconditioned mesenchymal stem cell regenerative effects on acute liver failure mice (Persian)]. Scientific Journal of Iranian Blood Transfusion Organization. 2015; 12(2):111-124.
31. Halliwell B. Reactive oxygen species in living systems: Source, biochemistry, and role in human disease. The American Journal of Medicine. 1991; 91(3):14–22. doi: 10.1016/0002-9343(91)90279-7 [DOI:10.1016/0002-9343(91)90279-7]
32. Xagorari A, Siotou E, Yiangou M, Tsolaki E, Bougiouklis D, Sakkas L, et al. Protective effect of mesenchymal stem cell-conditioned medium on hepatic cell apoptosis after acute liver injury. International Journal of Clinical and Experimental Pathology. 2013; 6(5):831-40. PMCID: PMC3638093 [PMID] [PMCID]
33. Rabani V, Shahsavani M, Gharavi M, Piryaei A, Azhdari Z, Baharvand H. Mesenchymal stem cell infusion therapy in a carbon tetrachloride-induced liver fibrosis model affects matrix metalloproteinase expression. Cell Biology International. 2010; 34(6):601–5. doi: 10.1042/cbi20090386 [DOI:10.1042/CBI20090386]
34. Stock P, Brückner S, Winkler S, Dollinger M, Christ B. Human bone marrow mesenchymal stem cell-derived hepatocytes improve the mouse liver after acute acetaminophen intoxication by preventing progress of injury. International Journal of Molecular Sciences. 2014; 15(4):7004–28. doi: 10.3390/ijms15047004 [DOI:10.3390/ijms15047004]
35. Mizuno H, Tobita M, Orbay H, Uysal AC, Lu F. Adipose-derived stem cells as a novel tool for future regenerative medicine. Stem Cells and Cancer Stem Cells. 2013; 165–74. doi: 10.1007/978-94-017-8032-2_15 [DOI:10.1007/978-94-017-8032-2_15]
36. Gruttadauria S, Grosso G, Pagano D, Biondi A, Echeverri GJ, Seria E, et al. Marrow-derived mesenchymal stem cells restore biochemical markers of acute liver injury in experimental model. Transplantation Proceedings. 2013; 45(2):480–6. doi: 10.1016/j.transproceed.2012.06.087 [DOI:10.1016/j.transproceed.2012.06.087]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.