Volume 14, Issue 1 (Winter & Spring 2017)                   ASJ 2017, 14(1): 1-10 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khorsandi L, Daneshi E, Orazizadeh M, Absalan F, Saremy S, Jafaee Sough A. Ameliorating Effect of β-Carotene on Gene Expression Alteration in Spermatozoon Cultured With Titanium Oxide. ASJ 2017; 14 (1) :1-10
URL: http://anatomyjournal.ir/article-1-163-en.html
1- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
2- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
3- Department of Anatomy, School of Medical Sciences, Abadan University of Medical Sciences, Abadan, Iran.
Abstract:   (4652 Views)

Introduction: In the present study, we assessed the effects of β-carotene on Titanium oxide Nanoparticle (TNP) induced mouse Spermatozoon Stem Cells (SSCs) apoptosis, at molecular level. 
Methods: After isolation from cryptorchid mouse testis and characterization, spermatogonial stem cells were divided into four groups. In the control group, spermatogonial cells were cultured in α-MEM supplemented with 2% BSA (Bovine Serum Albumin). β-Carotene (BC) group was composed of control culture condition supplemented with 1 µg/ml β-carotene. TNP group comprised control culture condition supplemented with 1 µg/ml titanium oxide (TiO2). Ultimately the last group contained control culture condition supplemented with both 1 µg/ml BC and 1 µg/ml TiO2for three days. After that, spermatozoon viability was evaluated by MTT (3-[4,5-dimethylthiazolyl-2]-2,5-diphenyltetrazolium bromide) assay, apoptotic and necrotic indices with Annexin V/PI kit and gene expression of CASP3 and MAPK14 using qRT-PCR method. 
Results: TiO2 could significantly decrease viability of the cultured spermatozoon in TNP group compared to the control group. In BC group, we determined increased frequency of live spermatozoon compared to TNP or control group. Expression of apoptotic related genes significantly increased in TNP group. Spermatozoon induced by titanium oxide might be useful in clinical procedures. Measurement of apoptosis index using Annexin V/PI method also showed significant increase in apoptotic index of germ cells in TiO2 treated spermatozoon (P<0.05).
Conclusion: Expression of apoptotic related genes in cultured spermatozoon could efficiently be decreased by β-carotene treatment. Application of BC had a potential protective effect in preventing apoptosis in germ cells and might be useful in clinic.

Full-Text [PDF 594 kb]   (1595 Downloads)    
Type of Study: Original |
Received: 2016/03/1 | Accepted: 2016/06/4 | Published: 2017/01/1

References
1. Okuda H, Kiuchi H, Takao T, Miyagawa Y, sujimura T, Nonomura N, et al. A novel transcriptional factor nkapl is a germ cell-specific suppressor of notch signaling and is indispensable for spermatogenesis. PLoS One. 2015; 10(4):0124293. doi: 10.1371/journal.pone.0124293 [DOI:10.1371/journal.pone.0124293]
2. Shi H, Magaye R, Castranova V, Zhao J. Titanium dioxide nanoparticles: A review of current toxicological data. Particle and Fibre Toxicology. 2013; 10(15):1-33. doi: 10.1186/1743-8977-10-15 [DOI:10.1186/1743-8977-10-15]
3. Braydich-Stolle LK, Lucas B, Schrand A, Murdock RC, Lee T, Schlager JJ et al. Silver nanoparticles disrupt GDNF/Fyn kinase signaling in spermatogonial stem cells. Toxicological Sciences. 2010; 116(2):577–89. doi: 10.1093/toxsci/kfq148 [DOI:10.1093/toxsci/kfq148]
4. Lucas B, Fields CH, and Hofmann MK. Signaling pathways in spermatogonial stem cells and their disruption by toxicants. Birth Defects Research Part C: Embryo Today: Reviews. 2009; 87(1):35–42. doi: 10.1002/bdrc.20145 [DOI:10.1002/bdrc.20145]
5. Kim JS, Yoon TJ, Yu KN, Kim BG, Park SJ, Kim HW, et al. Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicological Sciences. 2006; 89(1):338–47. doi: 10.1093/toxsci/kfj027 [DOI:10.1093/toxsci/kfj027]
6. Kashiwada S. Distribution of nanoparticles in the see-through medaka (Oryzias latipes). Environmental Health Perspectives. 2006; 114(11):1697–702. doi: 10.1289/ehp.9209 [DOI:10.1289/ehp.9209]
7. Elbastawisy YM, Saied HA. Effects of exposure to titanium dioxide nanoparticles on albino rat visual cortex electron microscopic study. Journal of American Science. 2013; 9(5):432-39.
8. Zhao X, Sheng L, Wang L, Hong J, Yu X, Sang X et al. Mechanisms of nanosized titanium dioxide-induced testicular oxidative stress and apoptosis in male mice. Particle and Fibre Toxicology. 2014; 11(12):47-53. doi: 10.1186/s12989-015-0098-0 [DOI:10.1186/s12989-015-0098-0]
9. Ema M, Kobayashi N, Naya M, Hanai S, Nakanishi J. Reproductive and developmental toxicity studies of manufactured nanomaterial. Reproductive Toxicology. 2010; 30(3):343-52. doi: 10.1016/j.reprotox.2010.06.002 [DOI:10.1016/j.reprotox.2010.06.002]
10. Guo LL, Liu XH, Qin DX, Gao L, Zhang HM, Liu JY. Effects of nanosized titanium dioxide on the reproductive system of male mice. National Journal of Andrology. 2009; 15(6):517-22. PMID: 19593991 [PMID]
11. Takeda K, Suzuki K, Ishihara A, Kubo-Irie M, Fujimoto R, Tabata M, et al. Nanoparticles transferred from pregnant mice to their offspring can damage the genital and cranial nerve systems. Journal of Health science. 2009; 55(1):95-102. doi: 10.1248/jhs.55.95 [DOI:10.1248/jhs.55.95]
12. Komatsu T, Tabata M, Kubo-Irie M, Shimizu T, Suzuki KI, Nihei Y. The effects of nanoparticles on mouse testis Leydig cells in vitro. Toxicology in Vitro. 2008; 22(8):1825-831. doi: 10.1016/j.tiv.2008.08.009 [DOI:10.1016/j.tiv.2008.08.009]
13. Altincicek B, Kovacs JL, Gerardo NM. Horizontally transferred fungal carotenoid genes in the two-spotted spider mite Tetranychus urticae. Biology Letters. 2011; 8(2):253–57. doi: 10.1098/rsbl.2011.0704 [DOI:10.1098/rsbl.2011.0704]
14. Orazizadeh M, Khorsandi L, Absalan F, Hashemitabar M, Daneshi E. Effect of beta-carotene on titanium oxide nanoparticles-induced testicular toxicity in mice. Journal of Assisted Reproduction and Genetics. 2014; 31(5):561–68. doi: 10.1007/s10815-014-0184-5 [DOI:10.1007/s10815-014-0184-5]
15. Lavicoli I, Fontana L, Leso V, Bergamaschi A. The effects of nanomaterials as endocrine disruptors. International Journal of Molecular Sciences. 2013; 14(8):16732–6801. doi: 10.3390/ijms140816732 [DOI:10.3390/ijms140816732]
16. Eskenazi B, Kidd SA, Marks AR, Sloter E, Block G, Wyrobeck AJ. Antioxidant intake is associated with semen quality in healthy men. Human Reproduction. 2005; 20(4):1006-012. doi: 10.1093/humrep/deh725 [DOI:10.1093/humrep/deh725]
17. van Pelt AMM, Morena AR, van Dissel-Emiliani FMF, Boitani C, Gaemers IC, de Rooij DG. Isolation of the synchronized A spermatogonia from adult vitamin A-deficient rat testes. Biology of Reproduction. 1996; 55(2):439-44. doi: 10.1095/biolreprod55.2.439 [DOI:10.1095/biolreprod55.2.439]
18. Shinohara T, Orwig KE, Avarbock MR, Brinster RL. Remodeling of the post natal mouse testis in accompanied by dramatic changes in stem cell number and niche accessibility. Proceedings of the National Academy of Sciences. 2001; 98(11):6186-191. doi: 10.1073/pnas.111158198 [DOI:10.1073/pnas.111158198]
19. Scarpino S, Morena AR, Petersen C, Froysa B, Soder O, Boitani CA. Rapid method of Sertoli cells isolation by DSA lectin, allowing mitotic analyses. Molecular and Cellular Endocrinology. 1998; 146(1-2):121-27. doi: 10.1016/s0303-7207(98)00190-7 [DOI:10.1016/S0303-7207(98)00190-7]
20. Jeong D, McLean DJ, Griswold MD. Long-term culture and transplantation of murine testicular germ cells. Journal of Andrology. 2003; 24(5):661-69. doi: 10.1002/j.1939-4640.2003.tb02724.x [DOI:10.1002/j.1939-4640.2003.tb02724.x]
21. Shi YQ, Wang QZ, Liao SY, Zhang Y, Liu YX, Han CS. In vitro propagation of spermatogonial stem cells from KM mice. Frontiers in Bioscience. 2006; 11(1):2614-622. doi: 10.2741/1995 [DOI:10.2741/1995]
22. Brüske-Hohlfeld I, Salata OV. Nanoparticles–known and unknown health risks. Journal of Nanobiotechnology. 2004; 2:12. doi: 10.1186/1477-3155-2-12 [DOI:10.1186/1477-3155-2-12]
23. Braydich-Stolle L, Hussain S, Schlager J, Hofmann M. In Vitro Cytotoxicity of Nanoparticles in Mammalian Germline Stem Cells. Toxicological Sciences. 2005; 88(2):412–19. doi: 10.1093/toxsci/kfi256 [DOI:10.1093/toxsci/kfi256]
24. Orazizadeh M, Daneshi E, Hashemitmar M, Absalan F, Khorsandi L. Protective effect of beta-carotene against titanium dioxide nanoparticles induced apoptosis in mouse testicular tissue. Andrologia. 2014; 47(7):816-25. doi: 10.1111/and.12336 [DOI:10.1111/and.12336]
25. Asare N, Instanes C, Sandberg WJ, Refsnes M, Schwarze P, Kruszewski M, et al. Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. Toxicology. 2012; 291(1-3):65-72. doi: 10.1016/j.tox.2011.10.022 [DOI:10.1016/j.tox.2011.10.022]
26. Said TM, Paasch U, Glander HJ, Agarwal A. Role of caspases in male infertility. Human Reproduction Update. 2004; 10(1):39-51. doi: 10.1093/humupd/dmh003 [DOI:10.1093/humupd/dmh003]
27. Rahman Q, Narwood J, Hatch G. Evidence that exposure of particulate air pollutants to human and rat alveolar macrophages leads to different oxidative stress. Biochemical and Biophysical Research Communications. 2002; 240(3):669–72. doi: 10.1006/bbrc.1997.7373 [DOI:10.1006/bbrc.1997.7373]
28. Wang JJ, Sanderson BJ, Wang H. Cyto- and genotoxicity of ultrafine TiO particles in cultured human lymphoblastoid cells. Mutation Research. 2007; 634(1-2):241-42. doi: 10.1016/j.mrgentox.2006.12.003 [DOI:10.1016/j.mrgentox.2006.12.003]
29. Park EJ, Yi J, Chung KH, Ryu DY, Choi J, Park K. Oxidative stress and apoptosis induced by titanium dioxin nanoparticles in cultured BEAS-2B cells. Toxicology Letters. 2008; 180(3):222–29. doi: 10.1016/j.toxlet.2008.06.869 [DOI:10.1016/j.toxlet.2008.06.869]
30. Li MWM, Mruk DD, and Cheng CY. Mitogen-activated protein kinases in male reproductive function. Trends in Molecular Medicine. 2009; 15(4):159–68. doi: 10.1016/j.molmed.2009.02.002 [DOI:10.1016/j.molmed.2009.02.002]
31. Wang XB, Gao HY, Hou BL, Huang J, Xi RG, Wu LJ. Nanoparticle realgar powders induce apoptosis in u937 cells through caspase MAPK and mitochondrial pathways. Archives of Pharmacal Research. 2004: 30(5):653–58. doi: 10.1007/bf02977662 [DOI:10.1007/BF02977662]
32. Kikuchi M, Tenneti L, Lipton SA. Role of p38 mitogen-activated protein kinase in axotomy-induced apoptosis of rat retinal ganglion cells. Journal of Neuroscience. 2000; 20(13):5037–5044. PMID: 10864961 [PMID]
33. Tikhomirov O, Carpenter G. Ligand-induced, p38-dependent apoptosis in cells expressing high levels of epidermal growth factor receptor and ErbB-2. Journal of Biological Chemistry. 2004; 279(13):12988-996. doi: 10.1074/jbc.m311655200 [DOI:10.1074/jbc.M311655200]
34. Park MT, Choi JA, Kim MJ, Um HD, Bae S, Kang CM, et al. Suppression of extracellular signal-related kinase and activation of p38 MAPK are two critical events leading to caspase-8- and mitochondria-mediated cell death in phytosphingosine-treated human cancer cells. Journal of Biological Chemistry. 2003; 278(50):50624–50634. doi: 10.1074/jbc.m309011200 [DOI:10.1074/jbc.M309011200]
35. Vardi N, Parlakpinar H, Ates B, Cetin A, Otlu A. Antiapoptotic and antioxidant effects of β-carotene against methotrexate-induced testicular injury. Fertility and Sterility. 2008; 92(6):2028-033. doi: 10.1016/j.fertnstert.2008.09.015 [DOI:10.1016/j.fertnstert.2008.09.015]
36. Peng HC, Chen JR, Chen YL, Yang SC, Yang SS. Beta-Carotene exhibits antioxidant and anti-apoptotic properties to prevent ethanol-induced cytotoxicity in isolated rat hepatocytes. Phytotherapy Research. 2010; 24(2):183–89. doi: 10.1002/ptr.3068 [DOI:10.1002/ptr.3068]
37. Liu C, Russell RM, Wang XD. Low dose beta-carotene supplementation of ferrets attenuates smoke-induced lung phosphorylation of JNK, p38 MAPK, and p53 proteins. Journal of Nutrition. 2004; 134(10):2705–710. PMID: 15465770 [DOI:10.1093/jn/134.10.2705] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.