Volume 14, Issue 1 (Winter & Spring 2017)                   ASJ 2017, 14(1): 35-42 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Fallahnezhad S, Rostami A, Jafari Anarkooli I. Effects of Different Pressures of CO2 on P33 Tumor Inhibitor Gene in Liver and Spleen Tissues During CO2 Pneumoperitoneum in Adult Rats. ASJ 2017; 14 (1) :35-42
URL: http://anatomyjournal.ir/article-1-156-en.html
1- Department of Anatomy, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
2- Department of Physiology and Pharmacology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
3- Department of Anatomy, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
Abstract:   (4065 Views)

Introduction: We aimed to study the effects of different CO2  pressures on expression of P33 gene and apoptosis in liver and spleen cells during CO2 pneumoperitoneum. 
Methods: This study was performed on 30 male Sprague-Dawley rats, weighing between 280 and 340 g (procured from Tehran Pasteur Institute’s animal house). They were randomly divided into 3 equal groups. Groups 1 and 2 received 10 and 20 mm Hg CO2 pressures during pneumoperitoneum, respectively, and group 3 was the control group. CO2 gas was insufflated through a cannula into abdominal cavity of rats in groups 1 and 2 for one hour; then perfusion was performed for half an hour. In group 3, cannula was put into the rats’ abdominal cavities without releasing any gas. Then the rats were killed, and their livers and spleens were removed after laparotomy to study expression of gene P33 and apoptosis using RT-PCR and TUNEL techniques. 
Results: The TUNEL technique revealed a significant rise in apoptosis in liver cells of rats that received 20 mm Hg pressure of gas compared to rats that received 10 mm Hg pressure of gas and the control group (P<0.001). Similarly, the increase in apoptosis in spleen cells was also significant in rats that received 20 mmHg gas pressure compared to rats in 10 mmHg  gas pressure and control groups (P<0.006). Furthermore, RT-PCR revealed a significant decrease in P33 gene mRNA in liver and spleen cells in 20 mmHg group compared to other two groups (P<0.001).
Conclusion: Pressure level and duration of CO2 gas administration affect viability of liver and spleen cells. Too high a pressure or too long a duration may release cytokines and free radicals from cells of these organs, which can lead to transient or serious dysfunction.

Full-Text [PDF 559 kb]   (1338 Downloads)    
Type of Study: Original |
Received: 2016/02/10 | Accepted: 2016/11/18 | Published: 2017/01/1

1. Hart DJ, Scott KJ. Development and evaluation of an HPLC method for the analysis of carotenoids in foods, and the measurement of the carotenoid content of vegetables and fruits commonly consumed in the UK. Food Chemistry. 1995; 54(1):101-11. doi: 10.1016/0308-8146(95)92669-b [DOI:10.1016/0308-8146(95)92669-B]
2. Schäfer M, Krähenbühl L. Effect of laparoscopy on intra-abdominal blood flow. Surgery. 2001; 129(4):385-89. doi: 10.1016/s0039-6060(01)44068-2 [DOI:10.1016/S0039-6060(01)44068-2]
3. Hanly EJ, Bachman SL, Marohn MR, Boden JH, Herring AE, De Maio A, et al. Carbon dioxide pneumoperitoneum–mediated attenuation of the inflammatory response is independent of systemic acidosis. Surgery. 2005; 137(5):559-66. doi: 10.1016/j.surg.2005.01.005 [DOI:10.1016/j.surg.2005.01.005]
4. Lindström P, Källskog Ö, Wadström J, Persson AE. Blood flow distribution during elevated intraperitoneal pressure in the rat. Acta Physiologica Scandinavica. 2003; 177(2):149-56. doi: 10.1046/j.1365-201x.2003.01056.x [DOI:10.1046/j.1365-201X.2003.01056.x]
5. Rosário MT, Ribeiro U, Corbett CE, Ozaki AC, Bresciani CC, Zilberstein B, et al. Does CO2 pneumoperitoneum alter the ultra-structuture of the mesothelium? Journal of Surgical Research. 2006; 133(2):84-88. doi: 10.1016/j.jss.2005.09.032 [DOI:10.1016/j.jss.2005.09.032]
6. Erikoglu M, Yol S, Avunduk MC, Erdemli E, Can A. Electron-microscopic alterations of the peritoneum after both cold and heated carbon dioxide pneumoperitoneum. Journal of Surgical Research. 2005; 125(1):73-77. doi: 10.1016/j.jss.2004.11.029 [DOI:10.1016/j.jss.2004.11.029]
7. Sare M, Yilmaz I, Hamamci D, Birincioglu M, Özmen M, Yesilada Ö. The effect of carbon dioxide pneumoperitoneum on free radicals. Surgical Endoscopy. 2000; 14(7):649-52. doi: 10.1007/s004640000168 [DOI:10.1007/s004640000168]
8. Kopernik G, Avinoach E, Grossman Y, Levy R, Yulzari R, Rogachev B, et al. The effect of a high partial pressure of carbon dioxide environment on metabolism and immune functions of human peritoneal cells-relevance to carbon dioxide pneumoperitoneum. American Journal of Obstetrics and Gynecology. 1998; 179(6):1503-10. doi: 10.1016/s0002-9378(98)70016-x [DOI:10.1016/S0002-9378(98)70016-X]
9. Unsal MA, Imamoglu M, Kadioglu M, Aydin S, Ulku C, Kesim M, et al. The acute alterations in biochemistry, morphology, and contractility of rat-isolated terminal ileum via increased intra-abdominal pressure. Pharmacological Research. 2006; 53(2):135-41. doi: 10.1016/j.phrs.2005.09.010 [DOI:10.1016/j.phrs.2005.09.010]
10. Levine AJ. P53, the cellular gatekeeper for growth and division. Cell. 1997; 88(3):323-31. doi: 10.1016/s0092-8674(00)81871-1 [DOI:10.1016/S0092-8674(00)81871-1]
11. Feng X, Hara Y, Riabowol K. Different HATS of the ING1 gene family. Trends in Cell Biology. 2002; 12(11):532-38. doi: 10.1016/s0962-8924(02)02391-7 [DOI:10.1016/S0962-8924(02)02391-7]
12. He GH, Helbing CC, Wagner MJ, Sensen CW, Riabowol K. Phylogenetic analysis of the ING family of PHD finger proteins. Molecular Biology and Evolution. 2005; 22(1):104-16. doi: 10.1093/molbev/msh256 [DOI:10.1093/molbev/msh256]
13. Garkavtsev I, Demetrick D, Riabowol K. Cellular localization and chromosome mapping of a novel candidate tumor suppressor gene (ING1). Cytogenetic and Genome Research. 1997; 76(3-4):176-78. doi: 10.1159/000134539 [DOI:10.1159/000134539]
14. Zeremski M, Horrigan SK, Grigorian IA, Westbrook CA, Gudkov AV. Localization of the candidate tumor suppressor gene ING1 to human chromosome 13q34. Somatic Cell and Molecular Genetics. 1997; 23(3):233-36. doi: 10.1007/bf02721376 [DOI:10.1007/BF02721376]
15. Royano SD, Reiter RJ. Melatonin: Helping cells cope with oxidative disaster. Cell Membranes and Free Radical Research. 2010; 2(3):99-111. doi: 10.1080/10715760500097831 [DOI:10.1080/10715760500097831]
16. Jäger D, Stockert E, Scanlan MJ, Güre AO, Jäger E, Knuth A, et al. Cancer-testis antigens and ING1 tumor suppressor gene product are breast cancer antigens characterization of tissue-specific ING1 transcripts and a homologue gene. Cancer Research. 1999; 59(24):6197-204. PMID: 10626813 [PMID]
17. Nouman GS, Angus B, Lunec J, Crosier S, Lodge A, Anderson JJ. Comparative assessment expression of the inhibitor of growth 1 gene (ING1) in normal and neoplastic tissues. Hybridoma and Hybridomics. 2002; 21(1):1-10. doi: 10.1089/15368590252917584 [DOI:10.1089/15368590252917584]
18. Nouman GS, Anderson JJ, Lunec J, Angus B. The role of the tumour suppressor p33 ING1b in human neoplasia. Journal of Clinical Pathology. 2003; 56(7):491-96. PMID: 12835293 [DOI:10.1136/jcp.56.7.491] [PMID] [PMCID]
19. Garkavtsev I, Grigorian IA, Ossovskaya VS, Chernov MV, Chumakov PM, Gudkov AV. The candidate tumour suppressor p33ING1 cooperates with p53 in cell growth control. Nature. 1998; 391(6664):295-98. doi: 10.1038/34675 [DOI:10.1038/34675]
20. Helbing CC, Veillette C, Riabowol K, Johnston RN, Garkavtsev I. A novel candidate tumor suppressor, ING1, is involved in the regulation of apoptosis. Cancer Research. 1997; 57(7):1255-258. doi: 10.1159/000134539 [DOI:10.1159/000134539]
21. Amorim CA, Van Langendonckt A, David A, Dolmans MM, Donnez J. Survival of human pre-antral follicles after cryopreservation of ovarian tissue, follicular isolation and in vitro culture in a calcium alginate matrix. Human Reproduction. 2009; 24(1):92-99. doi: 10.1093/humrep/den343 [DOI:10.1093/humrep/den343]
22. Schachtrupp A, Toens C, Hoer J, Klosterhalfen B, Lawong AG, Schumpelick V. A 24-h pneumoperitoneum leads to multiple organ impairment in a porcine model. Journal of Surgical Research. 2002; 106(1):37-45. doi: 10.1006/jsre.2002.6421 [DOI:10.1006/jsre.2002.6421]
23. Diebel LN, Dulchavsky SA, Brown WJ. Splanchnic ischemia and bacterial translocation in the abdominal compartment syndrome. Journal of Trauma. 1997; 43(5):852-55. doi: 10.1097/00005373-199711000-00019 [DOI:10.1097/00005373-199711000-00019]
24. İmamoğlu M, Çay A, Ünsal MA, Aydin S, Özdemir O, Karahan C, et al. The effects of increased intraabdominal pressure on testicular blood flow, oxidative stress markers, and morphology. Journal of Paediatric Surgery. 2006; 41(6):1118-124. doi: 10.1016/j.jpedsurg.2006.02.004 [DOI:10.1016/j.jpedsurg.2006.02.004]
25. Ozmen MM, Zulfikaroglu B, Col C, Cinel I, Isman FK, Cinel L, et al. Effect of increased abdominal pressure on cytokines (IL1β, IL6, TNFα), C-reactive protein (CRP), free radicals (NO, MDA), and histology. Surgical Laparoscopy Endoscopy & Percutaneous Techniques. 2009; 19(2):142-7. doi: 10.1097/sle.0b013e31819cdda7 [DOI:10.1097/SLE.0b013e31819cdda7]
26. Turkmenoglu O, Bozlu M, Isikay L, Dag A, Efesoy O, Muslu N, Aydin S. The effect of CO2 pneumoperitoneum on serum prostate-specific antigen levels in patients undergoing laparoscopic cholecystectomy. Surgical Laparoscopy Endoscopy & Percutaneous Techniques. 2010; 20(3):177-79. doi: 10.1097/sle.0b013e3181df9eb8 [DOI:10.1097/SLE.0b013e3181df9eb8]
27. Khoury W, Szold A, Klausner JM, Weinbroum AA. The hemodynamic effects of CO2-induced pressure on the kidney in an isolated perfused rat kidney model. Surgical Laparoscopy Endoscopy & Percutaneous Techniques. 2008; 18(6):573-78. doi: 10.1097/sle.0b013e3181875ba4 [DOI:10.1097/SLE.0b013e3181875ba4]
28. Andersson L, Lagerstrand L, Thörne A, Sollevi A, Brodin LÅ, Odeberg-Wernerman S. Effect of CO2 pneumoperitoneum on ventilation-perfusion relationships during laparoscopic cholecystectomy. Acta Anaesthesiologica Scandinavica. 2002; 46(5):552-60. doi: 10.1034/j.1399-6576.2002.460513.x [DOI:10.1034/j.1399-6576.2002.460513.x]
29. Gründel K, Böhm B, Bauwens K, Junghans T, Scheiba R. Influence of acute hemorrhage and pneumoperitoneum on hemodynamic and respiratory parameters. Surgical Endoscopy. 1998; 12(6):809-12. doi: 10.1007/s004649900718 [DOI:10.1007/s004649900718]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.