Volume 14, Issue 1 (Winter & Spring 2017)                   ASJ 2017, 14(1): 27-34 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Najafzadeh V, Shirazi R, Habibi Roudkenar M, Baazm M, Amidi F, Mehrannia K et al . Assessment of In Vitro-Derived Germ Cells Contribution in Oogenesis in Female Mice Ovaries. ASJ 2017; 14 (1) :27-34
URL: http://anatomyjournal.ir/article-1-153-en.html
1- Department of Biological Sciences, Faculty of Science & Engineering, University of Waikato, Hamilton, New Zealand.
2- Cellular and Molecular Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
3- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
4- Department of Anatomical Sciences, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
5- Department of Anatomical Sciences, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
Abstract:   (5454 Views)

Introduction: Contrary to a common belief, most mammalian females lose the ability of Germ Cell (GC) renewal and oogenesis during fetal life. Although, it has been claimed that germ line stem cells preserve oogenesis in postnatal mouse ovaries, that postnatal oogenesis keeps producing functional and sufficient GCs in the case of infertility (caused by different reasons) is doubtful. On the other hand, there are many studies showing derivation of primordial GCs and late GCs from Embryonic Stem Cells (ESCs) in vitro. This study aimed to clarify the role of ESC-derived GCs in oogenesis.
Methods: Mouse ESCs via Embryoid Body (EB) formation were differentiated into GC lineage by adding Bone Morphogenetic Protein 4 (BMP4) and Retinoic Acid (RA) to the culture medium. Expression of GC markers was characterized by using Reverse Transcription Polymerase Chain Reaction (RT-PCR) and immunohistochemistry. Several 6- to 10-week-old female mice, sterilized using chemical agents, were injected with ESCs-derived GCs thorough their tail veins. To track the transplanted cells, their ovaries were immunohistochemically stained after two months.
Results: Expression of GC specific markers such as mouse vasa homologue (Mvh) and Deleted in Azoospermia-Like (DAZL) indicated that GCs were successfully developed from ESCs. Interestingly, there was no evidence of homing of GCs in the transplanted ovaries after transplantation of ESCs-derived GCs. 
Conclusion: Our findings do not suggest any contribution of ESC-derived GCs within the sterilized mice ovaries.

Full-Text [PDF 579 kb]   (1601 Downloads)    
Type of Study: Original |
Received: 2016/01/10 | Accepted: 2016/09/25 | Published: 2017/01/1

References
1. Cui W. Mother or nothing: the agony of infertility. Bulletin of The World Health Organization. 2010; 88(12):881-2. doi: 10.2471/blt.10.011210 [DOI:10.2471/BLT.10.011210]
2. Johnson J, Canning J, Kaneko T, Pru J, Tilly J. Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature. 2004; 428(6979):145-50. doi: 10.1038/nature02316 [DOI:10.1038/nature02316]
3. Johnson J, Bagley J, Skaznik-Wikiel M, Lee H, Adams G, Niikura Y, et al. Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell. 2005; 122(2):303-15. doi: 10.1016/j.cell.2005.06.031 [DOI:10.1016/j.cell.2005.06.031]
4. Feng W, Cui Y, Zhan H, Shi M, Cui W, Guo K, et al. Prevention of premature ovarian failure and osteoporosis induced by irradiation using allogeneic ovarian/bone marrow transplantation. Transplantation. 2010; 89(4):395. doi: 10.1097/tp.0b013e3181ca86bb [DOI:10.1097/TP.0b013e3181ca86bb]
5. Nicholas CR, Haston KM, Grewall AK, Longacre TA, Pera RAR. Transplantation directs oocyte maturation from embryonic stem cells and provides a therapeutic strategy for female infertility. Human molecular genetics. 2009; 18(22):4376-89. doi: 10.1093/hmg/ddp393 [DOI:10.1093/hmg/ddp393]
6. Niikura Y, Niikura T, Tilly JL. Aged mouse ovaries possess rare premeiotic germ cells that can generate oocytes following transplantation into a young host environment. Aging (Albany NY). 2009; 1(12):971-78. doi: 10.18632/aging.100105 [DOI:10.18632/aging.100105]
7. West F, Shirazi R, Mardanpour P, Ozcan S, Dinc G, Hodges D, et al. In vitro–derived gametes from stem cells. Seminars in Reproductive Medicine. 2013; 31(1):33–8. doi: 10.1055/s-0032-1331795 [DOI:10.1055/s-0032-1331795]
8. Hayashi K, Saitou M. Generation of eggs from mouse embryonic stem cells and induced pluripotent stem cells. Nature protocols. 2013; 8(8):1513-24. doi: 10.1038/nprot.2013.090 [DOI:10.1038/nprot.2013.090]
9. Nayernia K, Nolte J, Michelmann HW, Lee JH, Rathsack K, Drusenheimer N, et al. In vitro-differentiated embryonic stem cells give rise to male gametes that can generate offspring mice. Developmental Cell. 2006; 11(1):125-32. doi: 10.1016/j.devcel.2006.05.010 [DOI:10.1016/j.devcel.2006.05.010]
10. Shirazi R, Zarnani AH, Soleimani M, Abdolvahabi MA, Nayernia K, Kashani IR. BMP4 can generate primordial germ cells from bone-marrow-derived pluripotent stem cells. Cell biology international. 2012; 36(12):1185-93. doi: 10.1042/cbi20110651 [DOI:10.1042/CBI20110651]
11. Nakaki F, Hayashi K, Ohta H, Kurimoto K, Yabuta Y, Saitou M. Induction of mouse germ-cell fate by transcription factors in vitro. Nature. 2013; 501(7466):222-6. doi: 10.1038/nature12417 [DOI:10.1038/nature12417]
12. Li PZ, Yan GY, Han L, Pang J, Zhong BS, Zhang GM, et al. Overexpression of STRA8, BOULE, and DAZL genes promotes goat bone marrow–derived mesenchymal stem cells in vitro transdifferentiation toward putative male germ cells. Reproductive Sciences. 2016. doi: 10.1177/1933719116654990. [DOI:10.1177/1933719116654990]
13. Hubner K, Fuhrmann G, Christenson L, Kehler J, Reinbold R, De La Fuente R, et al. Derivation of oocytes from mouse embryonic stem cells. Science. 2003; 300(5623):1251-59. doi: 10.1126/science.1083452 [DOI:10.1126/science.1083452]
14. Clark A, Bodnar M, Fox M, Rodriquez R, Abeyta M, Firpo M, et al. Spontaneous differentiation of germ cells from human embryonic stem cells in vitro. Human Molecular Genetics. 2004; 13(7):727-32. doi: 10.1093/hmg/ddh088 [DOI:10.1093/hmg/ddh088]
15. Lacham Kaplan O, Chy H, Trounson A. Testicular cell conditioned medium supports differentiation of embryonic stem cells into ovarian structures containing oocytes. Stem Cells. 2006; 24(2):266-73. doi: 10.1634/stemcells.2005-0204 [DOI:10.1634/stemcells.2005-0204]
16. Marques-Mari AI, Lacham-Kaplan O, Medrano JV, Pellicer A, Simon C. Differentiation of germ cells and gametes from stem cells. Human Reproduction Update. 2009; 15(3):379–90. doi: 10.1093/humupd/dmp001 [DOI:10.1093/humupd/dmp001]
17. Zeng F, Huang F, Guo J, Hu X, Liu C, Wang H. Emerging methods to generate artificial germ cells from stem cells. Biology of reproduction. 2015; 92(4):89-95. doi: 10.1095/biolreprod.114.124800 [DOI:10.1095/biolreprod.114.124800]
18. Park ES, Woods DC, Tilly JL. Bone morphogenetic protein 4 promotes mammalian oogonial stem cell differentiation via Smad1/5/8 signaling. Fertility and sterility. 2013; 100(5):1468-75. doi: 10.1016/j.fertnstert.2013.07.1978 [DOI:10.1016/j.fertnstert.2013.07.1978]
19. Robertson E. Embryo-derived stem cell lines. Robertson EJ, editor. Teratocarcinomas and Embryonic Stem Cells: A Practical Approach. Oxford: IRL Press; 1987.
20. Liao D, Gong P, Li X, Tan Z, Yuan Q. Co-culture with Schwann cells is an effective way for adipose-derived stem cells neural transdifferentiation. Archives of Medical Science. 2010; 6(2):145-51. doi: 10.5114/aoms.2010.13885 [DOI:10.5114/aoms.2010.13885]
21. Koruji M, Movahedin M, Mowla S, Gourabi H, Arfaee A. Efficiency of adult mouse spermatogonial stem cell colony formation under several culture conditions. In Vitro Cellular & Developmental Biology-Animal. 2009; 45(5-6):281-9. doi: 10.1007/s11626-008-9169-y [DOI:10.1007/s11626-008-9169-y]
22. Geijsen N, Horoschak M, Kim K, Gribnau J, Eggan K, Daley G. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature. 2003; 427(6970):148-54. doi: 10.1038/nature02247 [DOI:10.1038/nature02247]
23. Nayernia K, Nolte J, Michelmann H, Lee J, Rathsack K, Drusenheimer N, et al. In vitro-differentiated embryonic stem cells give rise to male gametes that can generate offspring mice. Developmental Cell. 2006; 11(1):125-32. doi: 10.1016/j.devcel.2006.05.010 [DOI:10.1016/j.devcel.2006.05.010]
24. Kashani IR, Zarnani AH, Soleimani M, Abdolvahabi MA, Nayernia K, Shirazi R. Retinoic acid induces mouse bone marrow-derived CD15+, Oct4+ and CXCR4+ stem cells into male germ-like cells in a two-dimensional cell culture system. Cell biology international. 2014; 38(6):782-9. doi: 10.1002/cbin.10260 [DOI:10.1002/cbin.10260]
25. Toyooka Y, Tsunekawa N, Akasu R, Noce T. Embryonic stem cells can form germ cells in vitro. Proceedings of the National Academy of Sciences of the United States of America. 2003; 100(20):11457. doi: 10.1073/pnas.1932826100 [DOI:10.1073/pnas.1932826100]
26. Noce T, Okamoto-Ito S, Tsunekawa N. Vasa homolog genes in mammalian germ cell development. Cell Structure and Function. 2001; 26(3):131-6. doi: 10.1247/csf.26.131 [DOI:10.1247/csf.26.131]
27. Yamauchi K, Hasegawa K, Chuma S, Nakatsuji N, Suemori H. In vitro germ cell differentiation from cynomolgus monkey embryonic stem cells. Plos One. 2009; 4(4):5338. doi: 10.1371/journal.pone.0005338 [DOI:10.1371/journal.pone.0005338]
28. De Felici M, Scaldaferri M, Lobascio M, Iona S, Nazzicone V, Klinger F, et al. Experimental approaches to the study of primordial germ cell lineage and proliferation. Human reproduction update. 2004; 10(3):197-206. doi: 10.1093/humupd/dmh020 [DOI:10.1093/humupd/dmh020]
29. Lawson KA, Dunn NR, Roelen BAJ, Zeinstra LM, Davis AM, Wright CVE, et al. Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes & development. 1999; 13(4):424-36. doi: 10.1101/gad.13.4.424 [DOI:10.1101/gad.13.4.424]
30. Ying Y, Zhao GQ. Cooperation of endoderm-derived BMP2 and extraembryonic ectoderm-derived BMP4 in primordial germ cell generation in the mouse. Developmental Biology. 2001; 232(2):484-92. doi: 10.1006/dbio.2001.0173 [DOI:10.1006/dbio.2001.0173]
31. Ying Y, Qi X, Zhao GQ. Induction of primordial germ cells from murine epiblasts by synergistic action of BMP4 and BMP8B signaling pathways. Proceedings of the National Academy of Sciences. 2001; 98(14):7858. doi: 10.1073/pnas.151242798 [DOI:10.1073/pnas.151242798]
32. Geijsen N, Horoschak M, Kim K, Gribnau J, Eggan K, Daley GQ. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature. 2004; 427(6970):148-54. doi: 10.1038/nature02247 [DOI:10.1038/nature02247]
33. Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature. 2007; 448(7150):196-9. doi: 10.1038/nature05972 [DOI:10.1038/nature05972]
34. Saitou M, Miyauchi H. Gametogenesis from Pluripotent Stem Cells. Cell Stem Cell. 2016; 18(6):721-35. doi: 10.1016/j.stem.2016.05.001 [DOI:10.1016/j.stem.2016.05.001]
35. Koshimizu U, Watanabe M, Nakatsuji N. Retinoic acid is a potent growth activator of mouse primordial germ cells in vitro. Developmental Biology. 1995; 168(2):683-5. doi: 10.1006/dbio.1995.1113 [DOI:10.1006/dbio.1995.1113]
36. Eggan K, Jurga S, Gosden R, Min I, Wagers A. Ovulated oocytes in adult mice derive from non-circulating germ cells. Nature. 2006; 441(7097):1109-14. doi: 10.1038/nature04929 [DOI:10.1038/nature04929]
37. Begum S, Papaioannou V, Gosden R. The oocyte population is not renewed in transplanted or irradiated adult ovaries. Human Reproduction. 2008; 23(10):2326-30. doi: 10.1093/humrep/den249 [DOI:10.1093/humrep/den249]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.