Volume 13, Issue 2 (Summer & Autumn 2016)                   ASJ 2016, 13(2): 79-84 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Samanipour R, Salehi Rozveh H. Embryonic Stem Cell and Osteogenic Differentiation. ASJ. 2016; 13 (2) :79-84
URL: http://anatomyjournal.ir/article-1-171-en.html
1- Department of Nuclear Engineering, Faculty of Basic Science and Nuclear Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
2- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
Abstract:   (6231 Views)

Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells, including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cells (MDSCs), and dental pulp stem cells (DPSCs) have received extensive attention in the field of bone tissue engineering due to their distinct biological capability to differentiate into osteogenic lineages. Application of these stem cells to bone tissue engineering requires their in vitro differentiation into bone forming cells, osteoblasts. For this purpose, efficient in vitro differentiation towards osteogenic lineage requires the development of well-defined and proficient protocols. This protocol would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source for application to bone tissue engineering therapies. This review article critically examines the various experimental strategies used to direct the differentiation of ESC, BMMSC, UCB-MSC, ADSC, MDSC, and DPSC towards osteogenic lineages and their potential applications in tissue engineering, particularly in the regeneration of bone.

Full-Text [PDF 444 kb]   (2518 Downloads)    
Type of Study: Review |
Received: 2015/11/23 | Accepted: 2016/02/10 | Published: 2016/07/1

1. Hwang YS, Randle WL, Bielby R, Polak JM, Mantalaris A. Enhanced derivation of osteogenic cells from murine embryonic stem cells after treatment with HepG2-conditioned medium and modulation of the embryoid body formation period: application to skeletal tissue engineering. Tissue Engineering. 2006; 12(6):1381-392. PMID: 16846337 [DOI:10.1089/ten.2006.12.1381] [PMID]
2. Bielby RC, Pryce RS, Hench LL, Polak JM. Enhanced derivation of osteogenic cells from murine embryonic stem cells after treatment with ionic dissolution products of 58S bioactive sol-gel glass. Tissue Engineering. 2005; 11(3-4):479-88. doi: 10.1089/ten.2005.11.479 [DOI:10.1089/ten.2005.11.479]
3. Zhang J, Wang M, Cha JM, Mantalaris A. The incorporation of 70s bioactive glass to the osteogenic differentiation of murine embryonic stem cells in 3D bioreactors. Journal of Tissue Engineering and Regenerative Medicine. 2009; 3(1):63-71. doi: 10.1002/term.135 [DOI:10.1002/term.135]
4. Zhu JX, Sasano Y, Takahashi I, Mizoguchi I, Kagayama M. Temporal and spatial gene expression of major bone extracellular matrix molecules during embryonic mandibular osteogenesis in rats. Histochemical Journal. 2001; 33(1):25-35. doi 10.1007/pl00008242 [DOI:10.1007/PL00008242]
5. Verfaillie CM. Adult stem cells: assessing the case for pluripotency. Trends in Cell Biology. 2002; 12(11):502-8. doi 10.1016/s0962-8924(02)02386-3 [DOI:10.1016/S0962-8924(02)02386-3]
6. Quarto R, Thomas D, Liang CT. Bone progenitor cell deficits and the age-associated decline in bone repair capacity. Calcified Tissue International. 1995; 56(2):123-29. doi 10.1007/bf00296343 [DOI:10.1007/BF00296343]
7. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998; 282(5391):1145-147. doi: 10.1126/science.282.5391.1145 [DOI:10.1126/science.282.5391.1145]
8. Heng BC, Cao T, Stanton LW, Robson P, Olsen B. Strategies for directing the differentiation of stem cells into the osteogenic lineage in vitro. Journal of Bone and Mineral Research. 2004; 19(9):1379-394. doi: 10.1359/jbmr.040714 [DOI:10.1359/JBMR.040714]
9. Bielby RC, Boccaccini AR, Polak JM, Buttery LD. In vitro differentiation and in vivo mineralization of osteogenic cells derived from human embryonic stem cells. Tissue Engineering. 2004; 10(9-10):1518-525. doi: 10.1089/ten.2004.10.1518 [DOI:10.1089/ten.2004.10.1518]
10. Cao T, Heng BC, Ye CP, Liu H, Toh WS, Robson P, et al. Osteogenic differentiation within intact human embryoid bodies result in a marked increase in osteocalcin secretion after 12 days of in vitro culture, and formation of morphologically distinct nodule-like structures. Tissue & Cell. 2005; 37(4):325-34. doi: 10.1016/j.tice.2005.03.008 [DOI:10.1016/j.tice.2005.03.008]
11. Sottile V, Thomson A, McWhir J. In vitro osteogenic differentiation of human ES cells. Cloning Stem Cells. 2003; 5(2):149-55. doi: 10.1089/153623003322234759 [DOI:10.1089/153623003322234759]
12. Ahn SE, Kim S, Park KH, Moon SH, Lee HJ, Kim GJ, et al. Primary bone-derived cells induce osteogenic differentiation without exogenous factors in human embryonic stem cells. Biochemical and Biophysical Research Communications. 2006; 340(2):403-8. doi: 10.1016/j.bbrc.2005.12.020 [DOI:10.1016/j.bbrc.2005.12.020]
13. Kim SS, Ahn SE, Lee JH, Lim DS, Kim KS, Chung HM, et al. A novel culture technique for human embryonic stem cells using porous membranes. Stem Cells. 2007; 25(10):2601-609. doi: 10.1634/stemcells.2006-0814 [DOI:10.1634/stemcells.2006-0814]
14. Robey PG, Termine JD. Human bone cellsin vitro. Calcified Tissue International. 1985; 37(5):453-60. doi: 10.1007/bf02557826 [DOI:10.1007/BF02557826]
15. Harris LD, Kim BS, Mooney DJ. Open pore biodegradable matrices formed with gas foaming. Journal of Biomedical Materials Research. 1998; 42(3):396-402. PMID: 9788501 https://doi.org/10.1002/(SICI)1097-4636(19981205)42:3<396::AID-JBM7>3.0.CO;2-E [DOI:10.1002/(SICI)1097-4636(19981205)42:33.0.CO;2-E]
16. Kim SS, Park MS, Jeon O, Choi CY, Kim BS. Poly (lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials. 2006; 27(8):1399-409.doi: 10.1016/j.biomaterials.2005.08.016 [DOI:10.1016/j.biomaterials.2005.08.016]
17. Nagano M, Kitsugi T, Nakamura T, Kokubo T, Tanahashi M. Bone bonding ability of an apatite-coated polymer produced using a biomimetic method: A mechanical and histological study in vivo. Journal of Biomedical Materials Research. 1996; 31(4):487-94. doi: 10.1002/(SICI)1097-4636(199608)31:4<487::AID-JBM8>3.0.CO;2-H https://doi.org/10.1002/(SICI)1097-4636(199608)31:4<487::AID-JBM8>3.0.CO;2-H [DOI:10.1002/(SICI)1097-4636(199608)31:43.0.CO;2-H]
18. Justesen J, Pedersen SB, Stenderup K, Kassem M. Subcutaneous adipocytes can differentiate into bone forming cells in vitro and in vivo . Under review. Tissue Engineering. 2004; 10(3-4):381-91. doi: 10.1089/107632704323061744 [DOI:10.1089/107632704323061744]
19. Guillotin B, Bourget C, Remy-Zolgadri M, Bareille R, Fernandez P, Conrad VE, et al. Human primary endothelial cells stimulate human osteoprogenitor cell differentiation. Cellular Physiology and Biochemistry. 2004; 14(4-6):325-32. doi 10.1159/000080342 [DOI:10.1159/000080342]
20. Griffith LG, Naughton G. Tissue engineering-current challenges and expanding opportunities. Science. 2002; 295(5557):1009-14. doi: 10.1126/science.1069210 [DOI:10.1126/science.1069210]
21. Petite H, Viateau V, Bensaid W, Meunier A, de Pollak C, Bourguignon M, Oudina K, Sedel L, Guillemin G. Tissue-engineered bone regeneration. Nature Biotechnology. 2000; 18(9):959-63. doi: 10.1038/79449 [DOI:10.1038/79449]
22. Vacanti CA. Tissue-engineered growth of bone and cartilage. Transplantation Proceedings. 1993; 25(1):1019-21. [PMID]
23. Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering: state of the art and future trends. Macromolecular Bioscience. 2004; 4(8):743-65. doi: 10.1002/mabi.200400026 [DOI:10.1002/mabi.200400026]
24. Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. Journal of Cellular Biochemistry. 1997; 64(2):295-312. doi: 10.1002/(sici)1097-4644(199702)64:2<295::aid-jcb12>3.0.co;2-i https://doi.org/10.1002/(SICI)1097-4644(199702)64:2<295::AID-JCB12>3.0.CO;2-I [DOI:10.1002/(SICI)1097-4644(199702)64:23.0.CO;2-I]
25. Osteogenic stem cells and the stromal system of bone and marrow. Clinical Orthopaedics & Related Research. 1989; 240:270-80. PMID: 2645077 [PMID]
26. Caplan AI. Mesenchymal stem cells. Journal of Orthopaedic Research. 1991; 9(5):641-50. doi: 10.1002/jor.1100090504 [DOI:10.1002/jor.1100090504]
27. D'Ippolito G, Schiller PC, Ricordi C, Roos BA, Howard GA. Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. Journal of Bone & Mineral Research. 1999; 14(7):1115-122. doi: 10.1359/jbmr.1999.14.7.1115 [DOI:10.1359/jbmr.1999.14.7.1115]
28. Kim SS, Park MS, Gwak SJ, Choi CY, Kim BS. Accelerated bonelike apatite growth on porous polymer/ceramic composite scaffolds in vitro. Tissue Engineering. 2006; 12(10):2997-3006. doi: 10.1089/ten.2006.12.2997 [DOI:10.1089/ten.2006.12.2997]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Designed & Developed by : Yektaweb