Volume 13, Issue 1 (Winter & Spring 2016)                   ASJ 2016, 13(1): 39-46 | Back to browse issues page

XML Print


1- Department of Oral and Maxillofacial Surgery, School of Dentistry, Babol University of Medical Sciences, Babol, Iran.
2- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran.
3- Stem Cell Laboratory, Academic Center for Education, Culture, and Research, Qom Branch, Qom, Iran.
4- Stem Cell Laboratory, The Academic Center for Education, Culture and Research, Qom Branch, Qom, Iran.
Abstract:   (6035 Views)

Introduction: Natural biomaterials and growth factors are key factors in tissue engineering. The objective of the present study was to evaluate transforming growth factor beta 1 (TGF-β1) and curcumin on proliferation and differentiation of nasal-derived chondrocyte seeded on the fibrin glue scaffold.
Methods: Chondrocytes were isolated from nasal samples. Nasal-derived chondrocytes were seeded on fibrin glue at chondrogenic induction medium for 2 weeks. In this study, the effects of various concentrations of curcumin and TGF-β1 on the survival and proliferation of chondrocytes seeded on fibrin biomaterial were assessed by MTT assays. Also, chondrocytespecific
gene expression was assessed by real-time polymerase chain reaction (PCR).
Results: There were significant differences among the group treated with curcumin 10 μg compared to other groups with regard to cell viability. Also, gene expression of collagen type II, aggrecan, and SOX9 in the chondrocytes seeded on fibrin biomaterial containing the growth factor TGF-β1 significantly differed from those of curcumin and control group.
Conclusion: Our results indicate that TGF-β1 and natural biomaterial of curcumin can be used effectively in chondrogenic viability and differentiation of nasal-derived chondrocyte.

Full-Text [PDF 595 kb]   (4085 Downloads)    
Type of Study: Original |
Received: 2015/02/9 | Accepted: 2015/11/15 | Published: 2016/01/1

References
1. Junqueira LC, Carneiro J. Basic histology: text & atlas. New York: McGraw-Hill Publication; 2005. [DOI:10.1007/b137678] [PMCID]
2. Hardingham T, Tew S, Murdoch A. Tissue engineering: chondrocytes and cartilage. Arthritis Research. 2002; 4(3):63-68. [DOI:10.1186/ar561] [PMID] [PMCID]
3. Bronzino JD. Tissue Engineering and Artificial Organs. In: Bronzino JD, Editor. The Biomedical Engineering Handbook. New York: CRC Press; 2006, p. 1-8. [DOI:10.1201/9781420003871]
4. Vunjak-Novakovic G, Freshney RI. Culture of cells for tissue engineering. New Jersey: John Wiley and Sons; 2006. [PMCID]
5. Tabato Y. Recent progress in tissue engineering. Drug Discovery Today. 2001; 6(9):483-87. [DOI:10.1016/S1359-6446(01)01753-6]
6. Tsuchiya K, Chen G, Ushida T, Matsuno T, Tateishi T. The effect of co-culture of chondrocytes with mesenchymal stem cells on their cartilaginous phenotype in vitro. Materials Science & Engineering. 2004; 24(3):391-96. [DOI:10.1016/j.msec.2003.12.014]
7. Fautrel B, Hilliquin P, Rozenberg S, Allaert FA, Coste P, Leclerc A, et al. Impact of osteoarthritis: results of a nationwide survey of 10,000 patients consulting for OA. Joint Bone Spine. 2005; 72(3):235-40. [DOI:10.1016/j.jbspin.2004.08.009] [PMID]
8. Centers for Disease Control and Prevention. Prevalence and impact of arthritis by race and ethnicity-US, 1989-1991. Morbidity & Mortality Weekly Report. 1996; 45(18):373–78.
9. Kuo CK, Li WJ, Mauck RL, Tuan RS. Cartilage tissue engineering: its potential and uses. Current Opinion in Rheumatology. 2006; 18(1):64-73. [DOI:10.1097/01.bor.0000198005.88568.df] [PMID]
10. Casper D. Harrison's principles of internal medicine [M. Moosavi, M. Kheirkhahan, Persian trans]. Tehran: Teymurzadeh; 2014.
11. Tew SR, Kwan AP, Hann A, Thomson BM, Archer CW. The reactions of articular cartilage to experimental wounding: Role of apoptosis. Arthritis & Rheumatoogy. 2000; 43(1):215-25 https://doi.org/10.1002/1529-0131(200001)43:1<215::AID-ANR26>3.0.CO;2-X [DOI:10.1002/1529-0131(200001)43:13.0.CO;2-X]
12. Sheykhhasan M, Tabatabaei Qomi R, Kalhor N, Mehdizadeh M, Ghiasi M. Evaluation of the ability of natural and synthetic scaffolds in providing an appropriate environment for growth and chondrogenic differentiation of adipose-derived mesenchymal stem cells. Indian Journal of Orthopaedics. 2015; 49(5):8-15.
13. Ghiasi M, Tabatabaei-Qomi R, Kalhor N, Fazaely H, Mehdizadeh M, Sheykhhasan M. The design of scaffolds for use in tissue engineering. Sikkim Manipal University Journal. 2014; 1(2):261-73.
14. Sheykhhasan M, Tabatabaei Qomi R, Ghiasi M. Fibrin scaffolds designing in order to human adipose-derived mesenchymal stem cells differentiation to chondrocytes in the presence of TGF-β3. International Journal of Stem Cells. 2015; 8(2):1-9. [DOI:10.15283/ijsc.2015.8.2.219] [PMID] [PMCID]
15. Yamaguchi K, Shinohara C, Kojima S, Sodeoka M, Tsuji T. (2E,6R)-8-hydroxy- 2,6-dimethyl-2-octenoic acid; a novel anti-osteoporotic monoterpene, isolated from Cistanche salsa. Bioscience, Biotechnology & Biochemistry. 1999; 63(4):731–35. [DOI:10.1271/bbb.63.731] [PMID]
16. Masuda K, Ikeuchi M, Koyama T, Yamaguchi K, Woo JT, Nishimura T, et al. Suppressive effects of Anoectochilus formosanus extract on osteoclast formation in vitro and bone resorption in vivo. Journal of Bone & Mineral Metabolism. 2008; 26(2):123–29. [DOI:10.1007/s00774-007-0810-8] [PMID]
17. Hwang YC, Jeong IK, Ahn KJ, Chung HY. The effects of Acanthopanax senticosus extract on bone turnover and bone mineral density in Korean postmenopausal women. Journal of Bone & Mineral Metabolism. 2009; 27(5):584–90 [DOI:10.1007/s00774-009-0093-3] [PMID]
18. Henrotin Y, Priem F, Mobasheri A. Curcumin: a new paradigm and therapeutic opportunity for the treatment of osteoarthritis: curcumin for osteoarthritis management. Springerplus. 2013; 2(1):56. doi: 10.1186/2193-1801-2-56 [DOI:10.1186/2193-1801-2-56]
19. Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Research. 2003; 23(1):363-98. [PMID]
20. Bharti AC, Donato N, Singh S, Aggarwal BB. Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-kappa B and Ikappa Balpha kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood. 2003; 101(3):1053–062 [DOI:10.1182/blood-2002-05-1320] [PMID]
21. Shakibaei M, Csaki C, Nebrich S, Mobasheri A. Resveratrol suppresses interleukin-1beta-induced inflammatory signaling and apoptosis in human articular chondrocytes: potential for use as a novel nutraceutical for the treatment of osteoarthritis. Biochemical Pharmacology. 2008; 76(11):1426–439. [DOI:10.1016/j.bcp.2008.05.029] [PMID]
22. Vinatier C, Mrugala D, Jorgensen C, Guicheux J, Noël D. Cartilage engineering: a crucial combination of cells, biomaterials and biofactors. Trends in Biotechnology. 2009; 27(5):307-14. [DOI:10.1016/j.tibtech.2009.02.005] [PMID]
23. Baghban Eslaminezhad M, Taghiyar L. Mesenchymal stem cell purification from the articular cartilage cell culture. Iranian Journal of Basic Medical Sciences. 2007; 10(3):146-53.
24. Ghiasi M, Kalhor N, Tabatabaei Qomi R, Sheykhhasan M. The effects of synthetic and natural scaffolds on viability and proliferation of adipose-derived stem cells. Frontiers in Life Science. 2015; 8(4):1-12.
25. Sandell LJ, Aigner T. Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Research. 2001; 3(2):107-13. [DOI:10.1186/ar148] [PMID] [PMCID]
26. Shin H, Olsen BD, Khademhosseini A. The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules. Biomaterials. 2012; 33(11):3143-152. [DOI:10.1016/j.biomaterials.2011.12.050] [PMID] [PMCID]
27. Ahmed TA, Giulivi A, Griffith M, Hincke M. Fibrin glues in combination with mesenchymal stem cells to develop a tissue-engineered cartilage substitute. Tissue Engineering: Part A. 2011; 17(3-4):323-35. [DOI:10.1089/ten.tea.2009.0773] [PMID]
28. Jeong CG, Zhang H, Hollister SJ. Three-dimensional polycaprolactone scaffold-conjugated bone morphogenetic protein-2 promotes cartilage regeneration from primary chondrocytes in vitro and in vivo without accelerated endochondral ossification. Journal of Biomedical Material Research: Part A. 2012; 100(8):2088-096. [DOI:10.1002/jbm.a.33249] [PMID]
29. Oshima Y, Harwood FL, Coutts RD, Kubo T, Amiel D. Variation of mesenchymal cells in polylactic acid scaffold in an osteochondral repair model. Tissue Engineering: Part C. 2009; 15(4):595-604. [DOI:10.1089/ten.tec.2008.0487] [PMID] [PMCID]
30. Domm C, Schunke M, Christesen K, Kurz B. Redifferentiation of dedifferentiated bovine articular chondrocytes in alginate culture under low oxygen tension. Osteoarthritis Cartilage. 2002; 10(1):13–22. [DOI:10.1053/joca.2001.0477] [PMID]
31. Malda J, van Blitterswijk CA, Grojec M, Martens DE, Tramper J, Riesle J. Expansion of bovine chondrocytes on microcarriers enhances redifferentiation. Tissue Engineering. 2003; 9(5):939–48. [DOI:10.1089/107632703322495583] [PMID]
32. Fukui N, Purple CR, Sandell LJ. Cell biology of osteoarthritis: the chondrocyte's response to injury. Current Rheumatology Reports. 2001; 3(6):496–505. [DOI:10.1007/s11926-001-0064-8] [PMID]
33. Tallheden T, Bengtsson C, Brantsing C, Sjögren-Jansson E, Carlsson L, Peterson L, et al. Proliferation and differentiation potential of chondrocytes from osteoarthritic patients. Arthritis Research & Therapy. 2005; 7(3):560–68. [DOI:10.1186/ar1709] [PMID] [PMCID]
34. Zheng MH, Willers C, Kirilak L, Yates P, Xu J, Wood D, Shimmin A. Matrix-induced autologous chondrocyte implantation (MACI): biological and histological assessment. Tissue Engineering. 2007; 13(4):737-46. [DOI:10.1089/ten.2006.0246] [PMID]
35. Coutts RD, Sah RL, Amiel D. Effects of growth factors on cartilage repair. Instructional Course Lectures. 1997; 46:487-94. [PMID]
36. Csaki C, Mobasheri A, Shakibaei M. Synergistic chondroprotective effects of curcumin and resveratrol in human articular chondrocytes: inhibition of IL-1beta-induced NF-kappaB-mediated inflammation and apoptosis. Arthritis Research & Therapy. 2009; 11(6):165. doi: 10.1186/ar2850 [DOI:10.1186/ar2850]
37. Chowdhury TT, Salter DM, Bader DL, Lee DA. Signal transduction pathways involving p38 MAPK, JNK, NFkappaB and AP-1 influences the response of chondrocytes cultured in agarose constructs to IL-1beta and dynamic compression. Inflammation Research. 2008; 57(7):306-13. [DOI:10.1007/s00011-007-7126-y] [PMID]
38. Mathy-Hartert M, Jacquemond-Collet I, Priem F, Sanchez C, Lambert C, Henrotin Y. Curcumin inhibits pro-inflammatory mediators and metalloproteinase-3 production by chondrocytes. Inflammation Research. 2009; 58(12):899-908. [DOI:10.1007/s00011-009-0063-1] [PMID]
39. Mathy M, Sanchez C, Priem F, Henrotin Y. Curcumin inhibits interleukin-6, -8, nitric oxide and prostaglandin E2 synthesis by bovine chondrocytes. Osteoarthritis and Cartilage. 2007; 15(Suppl C):115-17. [DOI:10.1016/S1063-4584(07)61829-9]
40. Buhrmann C, Mobasheri A, Busch F, Aldinger C, Stahlmann R, Montaseri A, et al. Curcumin modulates nuclear factor kappaB (NF-kappaB)-mediated inflammation in human tenocytes in vitro: role of the phosphatidylinositol 3-kinase/Akt pathway. Journal of Biological Chemistry. 2011; 286(32):28556-8566. [DOI:10.1074/jbc.M111.256180] [PMID] [PMCID]
41. Huang G, Xu Z, Huang Y, Duan X, Gong W, Zhang Y, et al. Curcumin protects against collagen-induced arthritis via suppression of BAFF production. Journal of Clinical Immunology. 2013; 33(3):550-57. [DOI:10.1007/s10875-012-9839-0] [PMID]
42. Banji D, Pinnapureddy J, Banji OJ, Kumar AR, Reddy KN. Evaluation of the concomitant use of methotrexate and curcumin on Freund's complete adjuvant-induced arthritis and hematological indices in rats. Indian Journal of Pharmacology. 2011; 43(5):546-50. [DOI:10.4103/0253-7613.84970] [PMID] [PMCID]
43. Hong J, Bose M, Ju J, Ryu JH, Chen X, Sang S, et al. Modulation of arachidonic acid metabolism by curcumin and related beta-diketone derivatives: effects on cytosolic phospholipase A(2), cyclooxygenases and 5-lipoxygenase. Carcinogenesis. 2004; 25(9):1671-679. [DOI:10.1093/carcin/bgh165] [PMID]
44. Schulze-Tanzil G, Mobasheri A, Sendzik J, John T, Shakibaei M. Effects of curcumin (diferuloylmethane) on nuclear factor kappaB signaling in interleukin-1beta-stimulated chondrocytes. Annals of the New York Academy of Sciences. 2004; 1030(1):578-86. [DOI:10.1196/annals.1329.067] [PMID]
45. Nanji AA, Jokelainen K, Tipoe GL, Rahemtulla A, Thomas P, Dannenberg AJ. Curcumin prevents alcohol-induced liver disease in rats by inhibiting the expression of NF-kappa B-dependent genes. Gastrointestinal& Liver Physiology. 2003; 284(2):321-27. [DOI:10.1152/ajpgi.00230.2002] [PMID]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.