Volume 16, Issue 1 (Winter & Spring 2019)                   ASJ 2019, 16(1): 23-30 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Monfaredi S, Darabi S, Ahadi R, Rajaei F. Investigating Morphologic Changes and Viability of Rats’ Bone Marrow Mesenchymal Stem Cells in Microgravity. ASJ 2019; 16 (1) :23-30
URL: http://anatomyjournal.ir/article-1-202-en.html
1- Department of Anatomical Sciences, Faculty of Medicine, Qazvin Branch, Islamic Azad University, Qazvin, Iran.
2- Department of Anatomical Sciences, Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran.
3- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.
Abstract:   (3317 Views)
Introduction: Mesenchymal Stem Cells (MSCs) are multipotent cells capable of duplication and auto-recovery and distinction from various cells including chondrocytes, adipocytes, chondroblasts, fibroblasts, and osteoblasts. Human stem cells are always subject to local and external mechanical loads. External loads are caused by physical activity in external environment loading to infliction of static and dynamic loads on the body and internal loads are typically caused due to body physiological function. Mechanical factors can affect different parameters such as morphology, proliferation, migration, metabolism and death as well as chemical changes in cells and lead to chemical changes in extracellular matrix and intracellular environment, besides distinction of cells. 
Methods: MSCs were isolated from rat’s bone marrow, then cultured in microgravity conditions. Morphologic changes of cells were analyzed by taking pictures at different times.
Results: Results indicated a reduction in cell area and an increase in cell aspect ratio, in microgravity conditions. No significant difference was observed in cell angle of rotation at different time measurements. Also, in measuring viability of these cells using MTT test it was found that microgravity reduces viability of stem cells, considerably. 
Conclusion: Microgravity conditions have a considerable impact on morphology of MSCs. Furthermore, viability of MSCs decreased signi ficantly after 48 h, under microgravity conditions.
Full-Text [PDF 585 kb]   (1136 Downloads) |   |   Full-Text (HTML)  (1674 Views)  
Type of Study: Original | Subject: Stem Cell
Received: 2018/02/5 | Accepted: 2018/09/27 | Published: 2019/01/1

References
1. Brown JH. Physiology of man in space. Cambridge, Massachusetts: Academic Press; 2015.
2. Stein T. Weight, muscle and bone loss during space flight: Another perspective. European Journal of Applied Physiology. 2013; 113(9):2171-81. [DOI:10.1007/s00421-012-2548-9] [PMID] [DOI:10.1007/s00421-012-2548-9]
3. Vico L, Collet P, Guignandon A, Lafage Proust MH, Thomas T, Rehailia M, et al. Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. The Lancet. 2000; 355(9215):1607-11. [DOI:10.1016/S0140-6736(00)02217-0] [DOI:10.1016/S0140-6736(00)02217-0]
4. Calloni R, Viegas GS, Türck P, Bonatto D, Henriques JAP. Mesenchymal stromal cells from unconventional model organisms. Cytotherapy. 2014; 16(1):3-16. [DOI:10.1016/j.jcyt.2013.07.010] [PMID] [DOI:10.1016/j.jcyt.2013.07.010]
5. Manske SL, Boyd SK, Zernicke RF. Muscle and bone follow similar temporal patterns of recovery from muscle-induced disuse due to botulinum toxin injection. Bone. 2010; 46(1):24-31. [DOI:10.1016/j.bone.2009.10.016] [PMID] [DOI:10.1016/j.bone.2009.10.016]
6. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999; 284(5411):143-7. [DOI:10.1126/science.284.5411.143] [PMID] [DOI:10.1126/science.284.5411.143]
7. Khayat G, Rosenzweig DH, Quinn TM. Low frequency mechanical stimulation inhibits adipogenic differentiation of C3H10T1/2 mesenchymal stem cells. Differentiation. 2012; 83(4):179-84. [DOI:10.1016/j.diff.2011.12.004] [PMID] [DOI:10.1016/j.diff.2011.12.004]
8. Yuge L, Sasaki A, Kawahara Y, Wu S-l, Matsumoto M, Manabe T, et al. Simulated microgravity maintains the undifferentiated state and enhances the neural repair potential of bone marrow stromal cells. Stem Cells and Development. 2010; 20(5):893-900. [DOI:10.1089/scd.2010.0294] [PMID] [DOI:10.1089/scd.2010.0294]
9. Ozcivici E, Luu YK, Adler B, Qin YX, Rubin J, Judex S, et al. Mechanical signals as anabolic agents in bone. Nature Reviews Rheumatology. 2010; 6(1):50-9. [DOI:10.1038/nrrheum.2009.239] [PMID] [PMCID] [DOI:10.1038/nrrheum.2009.239]
10. Basso N, Jia Y, Bellows CG, Heersche JN. The effect of reloading on bone volume, osteoblast number, and osteoprogenitor characteristics: Studies in hind limb unloaded rats. Bone. 2005; 37(3):370-8. [DOI:10.1016/j.bone.2005.04.033] [PMID] [DOI:10.1016/j.bone.2005.04.033]
11. Arfat Y, Xiao WZ, Iftikhar S, Zhao F, Li DJ, Sun YL, et al. Physiological effects of microgravity on bone cells. Calcified Tissue International. 2014; 94(6):569-79. [DOI:10.1007/s00223-014-9851-x] [PMID] [DOI:10.1007/s00223-014-9851-x]
12. Ulbrich C, Wehland M, Pietsch J, Aleshcheva G, Wise P, van Loon J, et al. The impact of simulated and real microgravity on bone cells and mesenchymal stem cells. BioMed Research International. 2014; 2014:928507. [DOI:10.1155/2014/928507] [DOI:10.1155/2014/928507]
13. Wuest SL, Richard S, Kopp S, Grimm D, Egli M. Simulated microgravity: Critical review on the use of random positioning machines for mammalian Cell culture. BioMed Research International. 2015; 2015:971474. [DOI 10.1155/2015/971474]
14. Özçivici E. Effects of spaceflight on cells of bone marrow origin. Turkish Journal of Hematology. 2013; 30(1):1-7. [DOI:10.4274/tjh.2012.0127] [PMID] [PMCID] [DOI:10.4274/tjh.2012.0127]
15. Kamal KY, Hemmersbach R, Medina FJ, Herranz R. Proper selection of 1 g controls in simulated microgravity research as illustrated with clinorotated plant cell suspension cultures. Life Sciences in Space Research. 2015; 5:47-52. [DOI:10.1016/j.lssr.2015.04.004] [PMID] [DOI:10.1016/j.lssr.2015.04.004]
16. Merzlikina N, Buravkova L, Romanov YA. The primary effects of clinorotation on cultured human mesenchymal stem cells. Journal of Gravitational Physiology: A Journal of the International Society for Gravitational Physiology. 2004; 11(2):P193-4. [PMID]
17. Nishikawa M, Ohgushi H, Tamai N, Osuga K, Uemura M, Yoshikawa H, et al. The effect of simulated microgravity by three-dimensional clinostat on bone tissue engineering. Cell Transplantation. 2005; 14(10):829-35. [DOI:10.3727/000000005783982477] [PMID] [DOI:10.3727/000000005783982477]
18. Gershovich J, Buravkova L. Morphofunctional status and osteogenic differentiation potential of human mesenchymal stromal precursor cells during in vitro modeling of microgravity effects. Bulletin of Experimental Biology and Medicine. 2007; 144(4):608-13. [DOI:10.1007/s10517-007-0387-1] [PMID] [DOI:10.1007/s10517-007-0387-1]
19. Wuest SL, Stern P, Casartelli E, Egli M. Fluid dynamics appearing during simulated microgravity using random positioning machines. PloS One. 2017; 12(1):e0170826. [DOI:10.1371/journal.pone.0170826] [PMID] [PMCID]
20. Brungs S, Egli M, Wuest SL, Christianen PC, Van Loon JJ, Anh TJ, Hemmersbach R. Facilities for simulation of microgravity in the ESA ground-based facility programme. Microgravity Science and Technology. 2016; 28(3):191-203. [DOI:10.1007/s12217-015-9471-8] [DOI:10.1007/s12217-015-9471-8]
21. Meyers VE, Zayzafoon M, Douglas JT, McDonald JM. RhoA and cytoskeletal disruption mediate reduced osteoblastogenesis and enhanced adipogenesis of human mesenchymal stem cells in modeled microgravity. Journal of Bone and Mineral Research. 2005; 20(10):1858-66. [DOI:10.1359/JBMR.050611] [PMID] [PMCID] [DOI:10.1359/JBMR.050611]
22. Rucci N, Migliaccio S, Zani BM, Taranta A, Teti A. Characterization of the osteoblast‐like cell phenotype under microgravity conditions in the NASA‐approved Rotating Wall Vessel bioreactor (RWV). Journal of Cellular Biochemistry. 2002; 85(1):167-79. [DOI:10.1002/jcb.10120] [PMID] [DOI:10.1002/jcb.10120]
23. Chung JH, Ahn CB, Son KH, Yi E, Son HS, Kim HS, Lee SH. Simulated microgravity effects on nonsmall cell lung cancer cell proliferation and migration. Aerospace Medicine and Human Performance. 2017; 88(2):82-9. [DOI:10.3357/AMHP.4647.2017] [PMID] [DOI:10.3357/AMHP.4647.2017]
24. Sheyn D, Pelled G, Netanely D, Domany E, Gazit D. The effect of simulated microgravity on human mesenchymal stem cells cultured in an osteogenic differentiation system: A bioinformatics study. Tissue Engineering Part A. 2010; 16(11):3403-12. [DOI:10.1089/ten.tea.2009.0834] [PMID] [PMCID] [DOI:10.1089/ten.tea.2009.0834]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Designed & Developed by : Yektaweb