Volume 14, Issue 1 (Winter 2017 -- 2017)                   ASJ 2017, 14(1): 31-36 | Back to browse issues page

XML Print

1- MSc. Department of Anatomy, Faculty of Medical Sciences, Zahedan University of Medical Sciences, Zahedan, Iran.
2- Department of Anatomy, Faculty of Medical Sciences, Zahedan University of Medical Sciences, Zahedan, Iran.
3- Department of Internal Medicine, Faculty of Medical Sciences, Zahedan University of Medical Sciences, Zahedan, Iran.
4- Department of Community Medicine, Faculty of Medical Sciences, Zahedan University of Medical Sciences, Zahedan, Iran.
Abstract:   (179 Views)

Introduction: Cisplatin is a platinum-based drug widely used for the treatment of different cancers. Cell surface glycoconjugates play an important role in cell-cell interactions. The present investigation was carried out to study the toxic effects of double dose injection of cisplatin on cell surface glycoconjugates in rat as an experimental model.
Methods: In this experimental study, 45 adult male Sprague Dawley rats were used. Experimental group E1 and experimental group E2 received two repeated dose of 2.5 mg/kg and 5 mg/kg of cisplatin, respectively in the beginning of the first and fifth week of the experiment. After 8 weeks of injection, rats were killed. Tissue samples were removed and prepared sections were stained with H&E, PNA (Peanut agglutinin), and UEA (Ulex europaeus agglutinin) methods. Prepared microscopic slides were utilized for both histopathological and morphometrical studies. The obtained data were analyzed by ANOVA and Tukey tests using SPSS.
Results: Cisplatin administration induced a significant decrease in internal and external diameters of seminiferous tubules in the experimental groups compared to the control one (P<0.0001). There was also significant difference between control and experimental groups with regard to germinal epithelial thickness of seminiferous tubules (P<0.0001). Moreover, there was a significant difference between control and experimental groups with regard to spermatogenesis index (P<0.004). Also a significant elevation was seen in staining intensity of germinal epithelium to PNA and UEA in experimental groups, compared to control group (P<0.0001).
Conclusion: Cisplatin induces a dose-dependent morphological changes of germinal epithelium and extensive changes in distribution pattern of fucose- and Gal/GalNac-containing glycoconjugates in seminiferous epithelium in rats.

Full-Text [PDF 971 kb]   (95 Downloads)    
Type of Study: Original | Subject: Histology
Received: 2016/07/12 | Accepted: 2016/11/15 | Published: 2017/02/1

1. Jordan P, Carmo-Fonseca M. Molecular mechanisms involved in cisplatin cytotoxicity. Cellular and Molecular Life Sciences. 2000; 57(8):1229–35. doi: 10.1007/pl00000762 [DOI:10.1007/PL00000762]
2. Lirdi LC, Stumpp T, Sasso Cerri E, Miraglia SM. Amifostine protective effect on cisplatin-treated rat testis. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology. 2008; 291(7):797–808. doi: 10.1002/ar.20693 [DOI:10.1002/ar.20693]
3. Ahmed EA, Omar HM, elghaffar SKA, Ragb SMM, Nasser AY. The antioxidant activity of Vitamin C, DPPD and l-cysteine against Cisplatin-induced testicular oxidative damage in rats. Food and Chemical Toxicology. 2011; 49(5):1115–21. doi: 10.1016/j.fct.2011.02.002 [DOI:10.1016/j.fct.2011.02.002]
4. Diaz R, Jorda MV, Reynes G, Aparicio J, Segura A, Amador R, et al. Neoadjuvant cisplatin and etoposide, with or without tamoxifen, prior to radiotherapy in high-grade gliomas: A single-center experience. Anti-Cancer Drugs. 2005; 16(3):323–9. doi: 10.1097/00001813-200503000-00012 [DOI:10.1097/00001813-200503000-00012]
5. Ilbey YO, Ozbek E, Cekmen M, Simsek A, Otunctemur A, Somay A. Protective effect of curcumin in cisplatin-induced oxidative injury in rat testis: mitogen-activated protein kinase and nuclear factor-kappa B signaling pathways. Human Reproduction. 2009; 24(7):1717–25. doi: 10.1093/humrep/dep058 [DOI:10.1093/humrep/dep058]
6. Seaman F, Sawhney P, Giammona CJ, Richburg JH. Cisplatin-induced pulse of germ cell apoptosis precedes long-term elevated apoptotic rates in C57/BL/6 mouse testis. Apoptosis. 2003; 8(1):101–8. doi: 10.1023/a:1021734604913 [DOI:10.1023/A:1021734604913]
7. Aminsharifi AR, Talaei T, Kumar V, Sabayan B, Samani S, Mohamadhoseini E. A postulated role of testosterone for prevention of cisplatin gonadal toxicity. Medical Hypotheses. 2007; 68(3):525–7. doi: 10.1016/j.mehy.2006.08.023 [DOI:10.1016/j.mehy.2006.08.023]
8. Meistrich ML, Finch M, da Cunha MF, Hacker U, Au WW. Damaging effects of fourteen chemotherapeutic drugs on mouse testis cells. Cancer Research. 1982; 42(1):122-31. PMID: 7198505 [PMID]
9. Boekelheide K. Mechanisms of toxic damage to spermatogenesis. Journal of the National Cancer Institute Monographs. 2005; 2005(34):6–8. doi: 10.1093/jncimonographs/lgi006 [DOI:10.1093/jncimonographs/lgi006]
10. Vawda AI. Effect of testosterone on cisplatin-induced testicular damage. Archives of Andrology. 1994; 32(1):53–7. doi: 10.3109/01485019408987767 [DOI:10.3109/01485019408987767]
11. Cherry SM, Hunt PA, Hassold TJ. Cisplatin disrupts mammalian spermatogenesis, but does not affect recombination or chromosome segregation. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2004; 564(2):115–28. doi: 10.1016/j.mrgentox.2004.08.010 [DOI:10.1016/j.mrgentox.2004.08.010]
12. Martin RH, Ernst S, Rademaker A, Barclay L, Ko E, Summers N. Analysis of sperm chromosome complements before, during, and after chemotherapy. Cancer Genetics and Cytogenetics. 1999; 108(2):133–6. doi: 10.1016/s0165-4608(98)00125-3 [DOI:10.1016/S0165-4608(98)00125-3]
13. Howell SJ. Spermatogenesis after cancer treatment: Damage and recovery. Journal of the National Cancer Institute Monographs. 2005; 2005(34):12–7. doi: 10.1093/jncimonographs/lgi003 [DOI:10.1093/jncimonographs/lgi003]
14. Rad JS, Nejad DM, Roshankar L, Karimipor M, Ghanbari AA, Aazami A, et al. A study on the effect of thiotepa on mice spermatogenesis using light and electronic microscope. Pakistan Journal of Biological Sciences. 2008; 11(15):1929–34. doi: 10.3923/pjbs.2008.1929.1934 [DOI:10.3923/pjbs.2008.1929.1934]
15. Xu X-C, Brinck U, Schauer A, Gabius HJ. Differential binding activities of lectins and neoglycoproteins in human testicular tumors. Urological Research. 2000; 28(1):62–8. doi: 10.1007/s002400050012 [DOI:10.1007/s002400050012]
16. Thies A, Moll I, Berger J, Schumacher U. Lectin binding to cutaneous malignant melanoma: HPA is associated with metastasis formation. British Journal of Cancer. 2001; 84(6):819–23. doi: 10.1054/bjoc.2000.1673. [DOI:10.1054/bjoc.2000.1673]
17. Davis GB. Recent developments in glycoconjugates. Journal of the Chemical Society, Perkin Transactions 1. 1999; (22):3215. doi: 10.1039/a809773i [DOI:10.1039/a809773i]
18. Wang PH. Altered glycosylation in cancer: Sialic acids and sialyltransferases. Journal of Cancer Molecules. 2005; 1(2):73-81.
19. Arab MR, Salari S, Karimi M, Mofidpour H. Lectin histochemical study of cell surface glycoconjugate in gastric carcinoma using helix pomatia agglutinin. Acta Medica Iranica. 2010; 48(4):209. [PMID]
20. Krogerus L, Andersson LC. Different lectin-binding patterns in primary breast cancers and their metastases. Cancer. 1990; 66(8):1802-9. doi: 10.1002/1097-0142(19901015)66:8<1802::aid-cncr2820660827>3.0.co; 2-z
21. Sherwani AF, Mohmood S, Khan F, Khan RH, Azfer MA. Characterization of lectins and their specificity in carcinomas: An appraisal. Indian Journal of Clinical Biochemistry. 2003; 18(2):169–80. doi: 10.1007/bf02867384 [DOI:10.1007/BF02867384]
22. Blackmore PF. The neoglycoprotein mannosebovine serum albumin, but not progesterone, activates T-type calcium channels in human spermatozoa. Molecular Human Reproduction. 1999; 5(6):498–506. doi: 10.1093/molehr/5.6.498 [DOI:10.1093/molehr/5.6.498]
23. Türk G, Ateşşahin A, Sönmez M, Yüce A, Çeribaşi AO. Lycopene protects against cyclosporine A-induced testicular toxicity in rats. Theriogenology. 2007; 67(4):778–85. doi: 10.1016/j.theriogenology.2006.10.013 [DOI:10.1016/j.theriogenology.2006.10.013]
24. Bar Shira Maymon B, Yogev L, Marks A, Hauser R, Botchan A, Yavetz H. Sertoli cell inactivation by cytotoxic damage to the human testis after cancer chemotherapy. Fertility and Sterility. 2004; 81(5):1391–4. doi: 10.1016/j.fertnstert.2003.09.078 [DOI:10.1016/j.fertnstert.2003.09.078]
25. Spicer SS, Schulte BA. Detection and differentiation of glycoconjugates in various cell types by lectin histochemistry. Basic and Applied Histochemistry. 1988; 32(3):307-20. PMID:3067702 [PMID]
26. Sato Y, Nozawa S, Yoshiike M, Otoi T, Iwamoto T. Glycoconjugates recognized by peanut agglutinin lectin in the inner acellular layer of the lamina propria of seminiferous tubules in human testes showing impaired spermatogenesis. Human Reproduction. 2012; 27(3):659–68. doi: 10.1093/humrep/der430 [DOI:10.1093/humrep/der430]
27. Ilbey YO, Ozbek E, Simsek A, Otunctemur A, Cekmen M, Somay A. Potential chemoprotective effect of melatonin in cyclophosphamide- and cisplatin-induced testicular damage in rats. Fertility and Sterility. 2009; 92(3):1124–32. doi: 10.1016/j.fertnstert.2008.07.1758 [DOI:10.1016/j.fertnstert.2008.07.1758]
28. Bouchard MJ, Dong Y, McDermott BM, Lam D-H, Brown KR, Shelanski M, et al. Defects in nuclear and cytoskeletal morphology and mitochondrial localization in spermatozoa of mice lacking nectin-2, a component of cell-cell adherens junctions. Molecular and Cellular Biology. 2000; 20(8):2865–73. doi: 10.1128/mcb.20.8.2865-2873.2000 [DOI:10.1128/MCB.20.8.2865-2873.2000]
29. Mruk DD, Cheng CY. Sertoli-sertoli and sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocrine Reviews. 2004; 25(5):747–806. doi: 10.1210/er.2003-0022 [DOI:10.1210/er.2003-0022]
30. He D, Zhang D, Wei G, Lin T, Li X. Cytoskeleton vimentin disruption of mouse sertoli cells injured by nitrogen mustard in vitro. Journal of Andrology. 2006; 28(3):389–96. doi: 10.2164/jandrol.106.000455 [DOI:10.2164/jandrol.106.000455]
31. Liu Z, Sun Y, Su L, Sun Y, Kong S, Chang X, et al. Effects of cisplatin on testicular enzymes and Sertoli cell function in rats. Fundamental Toxicological Sciences. 2015; 2(4):137–45. doi: 10.2131/fts.2.137 [DOI:10.2131/fts.2.137]
32. França LR, Russell LD. The testis of domestic animals. In F Martinez-Garcia, J Regadera (Eds.), Male Reproduction: A Multidisciplinary Overview. Madrid: Churchill Communications; 1998.
33. Beytur A, Ciftci O, Oguz F, Oguzturk H, Yılmaz F. Montelukast attenuates side effects of cisplatin including testicular, spermatological, and hormonal damage in male rats. Cancer Chemotherapy and Pharmacology. 2011; 69(1):207–13. doi: 10.1007/s00280-011-1692-y [DOI:10.1007/s00280-011-1692-y]
34. Rezvanfar MA, Rezvanfar MA, Shahverdi AR, Ahmadi A, Baeeri M, Mohammadirad A, et al. Protection of cisplatin-induced spermatotoxicity, DNA damage and chromatin abnormality by selenium nano-particles. Toxicology and Applied Pharmacology. 2013; 266(3):356–65. doi: 10.1016/j.taap.2012.11.025 [DOI:10.1016/j.taap.2012.11.025]