Volume 14, Issue 1 (Winter 2017 -- 2017)                   ASJ 2017, 14(1): 3-8 | Back to browse issues page

XML Print

1- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
2- Department of Medical Informatics, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
3- Department of Health Information Management, Faculty of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
4- PhD Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
Abstract:   (345 Views)

Introduction: Disc degeneration is a natural aging process characterized by changes in appearance and chemical structure of the disc. This degeneration leads to back pain. In regard to the limitation of current therapeutical methods for patients with degenerated discs, arthroplasty has been suggested as an alternative method. To manufacture artificial discs for Iranians, determining normal lumbar intervertebral disc dimensions is necessary. Thus, we measure the most important dimensions of normal lumbar intervertebral discs in Iranians using Magnetic Resonance Imaging (MRI).
Methods: we studied lumbar intervertebral discs of 34 people who were 40-60 years old in Medical Imaging Center of Imam Khomeini Hospital. Out of them, 14 people without herniated disc and any other abnormalities related to spinal column on MRI were selected. There were 7 males and 7 females, and their average age was 48.07 years (range: 40 to 59 years). For accurate measurements, the relevant disc distances were measured by two radiologists and then the mean value for each segment was calculated.
Results: The mean (SD) values of anterior intervertebral disc height for L1/L2 to L5/S1 levels were measured and found as follows: 10.82(1.59) mm, 13.09(1.21) mm, 15.21(1.24) mm, 18.14(1.49) mm, 18.71(1.61) mm. The mean (SD) values of middle intervertebral disc height for L1/L2 to L5/S1 levels were measured as follows: 10(1.89) mm, 11.59(1.51) mm, 12.45(1.79) mm, 13.82(1.96) mm, 12.99(2.53) mm. The mean (SD) values of posterior intervertebral disc height for L1/L2 to L5/S1 levels were found as follows: 7.31(1.71) mm, 8.58(1.66) mm, 9.08(1.22) mm, 10.14(1.01) mm, 8.51(1.08) mm. The mean (SD) values of anterior-posterior disc length for L1/L2 to L5/S1 levels were found as follows: 30.23(2.71) mm, 32.03(2.43) mm, 32.86(2.44) mm, 33.08(2.37) mm, 31.33(2.55) mm. The mean (SD) values of transversal disc length for L1/L2 to L5/S1 levels were found as follows: 48.24(2.23) mm, 51.27(1.92) mm, 52.59(1.69) mm, 55.12(1.69) mm, 52.87(2.14) mm.
Conclusion: Knowledge of the normal lumbar intervertebral disc dimensions in every society is useful for surgical reconstruction to treat lumbar spine diseases and for medical manufacturers to make proper surgical devices in this regard.

Full-Text [PDF 1047 kb]   (106 Downloads)    
Type of Study: Original | Subject: Gross Anatomy
Received: 2016/08/24 | Accepted: 2016/11/8 | Published: 2017/02/1

1. Maniadakis N, Gray A. The economic burden of back pain in the UK. Pain. 2000; 84(1):95–103. doi: 10.1016/s0304-3959(99)00187-6 [DOI:10.1016/S0304-3959(99)00187-6]
2. Van Tulder MW, Koes BW, Bouter LM. A cost-of-illness study of back pain in The Netherlands. Pain. 1995; 62(2):233–40. doi: 10.1016/0304-3959(94)00272-g [DOI:10.1016/0304-3959(94)00272-G]
3. Tunset A, Kjaer P, Samir Chreiteh S, Secher Jensen T. A method for quantitative measurement of lumbar intervertebral disc structures: an intra- and inter-rater agreement and reliability study. Chiropractic & Manual Therapies. 2013; 21(1):26. doi: 10.1186/2045-709x-21-26 [DOI:10.1186/2045-709X-21-26]
4. Haughton V. The "dehydrated" lumbar intervertebral disk on MR, its anatomy, biochemistry and biomechanics. Neuroradiology. 2011; 53(S1):191–4. doi: 10.1007/s00234-011-0923-6 [DOI:10.1007/s00234-011-0923-6]
5. Niemeläinen R, Videman T, Dhillon SS, Battié MC. Quantitative measurement of intervertebral disc signal using MRI. Clinical Radiology. 2008; 63(3):252–5. doi: 10.1016/j.crad.2007.08.012 [DOI:10.1016/j.crad.2007.08.012]
6. Cassar-Pullicino VN. MRI of the ageing and herniating intervertebral disc. European Journal of Radiology. 1998; 27(3):214–28. doi: 10.1016/s0720-048x(97)00169-1 [DOI:10.1016/S0720-048X(97)00169-1]
7. Luoma K, Riihimäki H, Luukkonen R, Raininko R, Viikari-Juntura E, Lamminen A. Low pain in relation to lumbar disc degeneration. Spine. 2000; 25(4):487–92. doi: 10.1097/00007632-200002150-00016 [DOI:10.1097/00007632-200002150-00016]
8. Cassinelli EH, Kang JD. Current understanding of lumbar disc degeneration. Operative Techniques in Orthopaedics. 2000; 10(4):254–62. doi: 10.1016/s1048-6666(00)80025-7 [DOI:10.1016/S1048-6666(00)80025-7]
9. Smith LJ, Nerurkar NL, Choi KS, Harfe BD, Elliott DM. Degeneration and regeneration of the intervertebral disc: lessons from development. Disease Models & Mechanisms. 2010; 4(1):31–41. doi: 10.1242/dmm.006403 [DOI:10.1242/dmm.006403]
10. Boos N, Weissbach S, Rohrbach H, Weiler C, Spratt KF, Nerlich AG. Classification of age-related changes in lumbar intervertebral discs. Spine. 2002; 27(23):2631–44. doi: 10.1097/00007632-200212010-00002 [DOI:10.1097/00007632-200212010-00002]
11. Miwa S, Yokogawa A, Kobayashi T, Nishimura T, Igarashi K, Inatani H, et al. Risk Factors of Recurrent Lumbar Disk Herniation. Journal of Spinal Disorders & Techniques. 2015; 28(5):E265–E269. doi: 10.1097/bsd.0b013e31828215b3 [DOI:10.1097/BSD.0b013e31828215b3]
12. Shih KS, Hsu CC, Zhou SY, Hou SM. Biomechanical investigation of pedicle screw-based posterior stabilization systems for the treatment of lumbar degenerative disc disease using finite element analyses. Biomedical Engineering: Applications, Basis and Communications. 2015; 27(6):1550060. doi: 10.4015/s101623721550060x [DOI:10.4015/S101623721550060X]
13. Sengupta DK. Clinical Biomechanics of the Spine. Spine. 2017; 42:S3. doi: 10.1097/brs.0000000000002019 [DOI:10.1097/BRS.0000000000002019]
14. Goel VK, Grauer JN, Patel TC, Biyani A, Sairyo K, Vishnubhotla S, et al. Effects of Charite artificial disc on the implanted and adjacent spinal segments mechanics using a hybrid testing protocol. Spine. 2005; 30(24):2755-64. doi: 10.1097/01.brs.0000195897.17277.67 [DOI:10.1097/01.brs.0000195897.17277.67]
15. Grauer JN, Biyani A, Faizan A, Kiapour A, Sairyo K, Ivanov A, et al. Biomechanics of two-level Charite artificial disc placement in comparison to fusion plus single-level disc placement combination. The Spine Journal. 2006;6(6):659-66. doi: 10.1016/j.spinee.2006.03.011 [DOI:10.1016/j.spinee.2006.03.011]
16. Hollister SJ, Liao EE, Moffitt EN, Jeong CG, Kemppainen JM. Defining design targets for tissue engineering scaffolds. Fundamentals of Tissue Engineering and Regenerative Medicine. Berlin: Springer; 2009.
17. Tournier C, Aunoble S, Le Huec J, Lemaire J, Tropiano P, Lafage V, et al. Total disc arthroplasty: consequences for sagittal balance and lumbar spine movement. European Spine Journal. 2007; 16(3):411-21. doi: 10.1007/s00586-006-0208-7 [DOI:10.1007/s00586-006-0208-7]
18. Hong CH, Park JS, Jung KJ, Kim WJ. Measurement of the normal lumbar intervertebral disc space using magnetic resonance imaging. Asian Spine Journal. 2010; 4(1):1-6. doi: 10.4184/asj.2010.4.1.1 [DOI:10.4184/asj.2010.4.1.1]