Volume 14, Issue 1 (Winter & Spring 2017)                   ASJ 2017, 14(1): 19-26 | Back to browse issues page

XML Print


1- Department of Anatomy and Cell Biology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
2- Stem Cell and Cell Therapy Research Center, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
3- Department of Anatomical Sciences, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran.
Abstract:   (4775 Views)

Introduction: Despite technological advances and numerous published investigations, sexual dimorphism of Corpus Callosum (CC) remains a matter of ongoing controversy. In the present study on neurologically healthy Iranian adults, we investigated the possible gender- and age-related variations in anthropometric callosal measurements. 
Methods: Our sample comprised 35 male and 35 female subjects with the mean (SD) age of 42.8 (14.7) and 44.7 (15) years, respectively, who referred to Partow Magnetic Resonance Imaging (MRI) center in North of Iran for headache work-up. Individuals with known neurologic disorders, history of head trauma, left handed subjects, and those younger than 20 and older than 80 years old were excluded. We measured callosal and brain dimensions on the midsagittal section and analyzed the data using Independent sample t test, analysis of variance, analysis of covariance, Pearson correlation coefficient, and linear regression.
Results: The unadjusted dimensions were larger in male participants compared to female ones. Corpus callosum area on the midsagittal plane, the longitudinal brain and callosal measurements and dimensions related to the width of CC were significantly larger in males than females (P<0.05). Overall, the longitudinal dimensions of CC were larger in the elderly, while the younger subjects have significantly thicker callosal dimensions. The observed gender-related differences lost their statistical significance after adjusting for longitudinal brain dimensions.
Conclusion: We found apparently larger callosal dimensions in the male participants, which could be an artifact caused by the significantly larger male brain dimensions. Our investigations on the less studied racial groups also provide further evidence regarding the confounding effect of brain volume on the observed sexual dimorphism of CC.

Full-Text [PDF 462 kb]   (1662 Downloads)    
Type of Study: Original |
Received: 2016/03/6 | Accepted: 2016/06/21 | Published: 2017/01/1

References
1. Walterfang M, Velakoulis D. Callosal morphology in schizophrenia: what can shape tell us about function and illness? British Journal of Psychiatry. 2014; 204(1):9-11. doi: 10.1192/bjp.bp.113.132357 [DOI:10.1192/bjp.bp.113.132357]
2. Bachman AH, Lee SH, Sidtis JJ, Ardekani BA. Corpus callosum shape and size changes in early Alzheimer's disease: A longitudinal MRI study using the OASIS brain database. Journal of Alzheimer's Disease. 2014; 39(1):71-78. doi: 10.3233/JAD-131526
3. Hutchinson AD, Mathias JL, Banich MT. Corpus callosum morphology in children and adolescents with attention deficit hyperactivity disorder: A meta-analytic review. Neuropsychology. 2008; 22(3):341-49. doi: 10.1037/0894-4105.22.3.341 [DOI:10.1037/0894-4105.22.3.341]
4. Duff BJ, Macritchie KA, Moorhead TW, Lawrie SM, Blackwood DH. Human brain imaging studies of DISC1 in schizophrenia, bipolar disorder and depression: a systematic review. Schizophrenia Research. 2013; 147(1):1-13. doi: 10.1016/j.schres.2013.03.015 [DOI:10.1016/j.schres.2013.03.015]
5. Bellani M, Calderoni S, Muratori F, Brambilla P. Brain anatomy of autism spectrum disorders I. Focus on corpus callosum. Epidemiology and Psychiatric Sciences. 2013; 22(3):217-21. doi: 10.1017/s2045796013000139 [DOI:10.1017/S2045796013000139]
6. Men W, Falk D, Sun T, Chen W, Li J, Yin D, et al. The corpus callosum of Albert Einstein's brain: Another clue to his high intelligence? Brain. 2013; 137(4):e268. doi: 10.1093/brain/awt252 [DOI:10.1093/brain/awt252]
7. Abdolmaleki A, Mastery Farahani R, Ghoreishi SK, Shaerzadeh F, Aliaghaei A, Mirjavadi SH, et al. Magnetic resonance imaging-based morphometric assessment of sexual dimorphism of corpus callosum. Anatomical Sciences. 2016; 13(2):117-124.
8. Luders E, Toga AW, Thompson PM. Why size matters: differences in brain volume account for apparent sex differences in callosal anatomy: The sexual dimorphism of the corpus callosum. Neuroimage. 2014; 84:820-24. doi: 10.1016/j.neuroimage.2013.09.040 [DOI:10.1016/j.neuroimage.2013.09.040]
9. Luders E, Narr KL, Zaidel E, Thompson PM, Toga AW. Gender effects on callosal thickness in scaled and unscaled space. NeuroReport. 2006; 17(11):1103-106. doi: 10.1097/01.wnr.0000227987.77304.cc [DOI:10.1097/01.wnr.0000227987.77304.cc]
10. Gupta T, Singh B, Kapoor K, Gupta M, Kochar S. Corpus callosum morphometry: comparison of fresh brain, preserved brain and magnetic resonance imaging values. Anatomical Science International. 2008; 83(3):162-68. doi: 10.1111/j.1447-073x.2008.00227.x [DOI:10.1111/j.1447-073X.2008.00227.x]
11. Bermudez P, Zatorre RJ. Sexual dimorphism in the corpus callosum: methodological considerations in MRI morphometry. Neuroimage. 2001; 13(6):1121-30. doi: 10.1006/nimg.2001.0772 [DOI:10.1006/nimg.2001.0772]
12. Barnes J, Ridgway GR, Bartlett J, Henley SM, Lehmann M, Hobbs N, et al. Head size, age and gender adjustment in MRI studies: A necessary nuisance? Neuroimage. 2010; 53(4):1244-255. doi: 10.1016/j.neuroimage.2010.06.025 [DOI:10.1016/j.neuroimage.2010.06.025]
13. Smith R. Relative size versus controlling for size. Current Anthropology. 2005; 46(2):249-73. doi: 10.1086/427117 [DOI:10.1086/427117]
14. Constant D, Ruther H. Sexual dimorphism in the human corpus callosum? A comparison of methodologies. Brain Research. 1996; 727(1-2):99-106. doi: 10.1016/0006-8993(96)00358-7 [DOI:10.1016/0006-8993(96)00358-7]
15. Mohammadi MR, Zhand P, Mortazavi Moghadam B, Golalipour MJ. Measurement of the corpus callosum using magnetic resonance imaging in the north of Iran. Iranian Journal of Radiology. 2011; 8(4):218-23. doi: 10.5812/iranjradiol.4495 [DOI:10.5812/iranjradiol.4495]
16. Takeda S, Hirashima Y, Ikeda H, Yamamoto H, Sugino M, Endo S. Determination of indices of the corpus callosum associated with normal aging in Japanese individuals. Neuroradiology. 2003; 45(8):513-18. doi: 10.1007/s00234-003-1019-8 [DOI:10.1007/s00234-003-1019-8]
17. Gupta T, Singh B, Kapoor K, Gupta M, Kochhar S. Normative data of corpus callosal morphology in a North-West Indian population- an autopsy and MRI study. Journal of the Nepal Medical Association. 2009; 48(173):46-51. PMID: 19529058 [PMID]
18. Mitchell TN, Free SL, Merschhemke M, Lemieux L, Sisodiya SM, Shorvon SD. Reliable callosal measurement: population normative data confirm sex-related differences. American Journal of Neuroradiology. 2003; 24(3):410-18. PMID: 12637291 [PMID]
19. Gupta T, Singh B, Kapoor K, Gupta M, Kochhar S. Age and sex related variations in corpus callosal morphology. Nepal Medical College Journal. 2008; 10(4):215-21. PMID: 19558056 [PMID]
20. Bishop KM, Wahlsten D. Sex differences in the human corpus callosum: Myth or reality? Neuroscience & Biobehavioral Reviews. 1997; 21(5):581-601. doi: 10.1016/s0149-7634(96)00049-8 [DOI:10.1016/S0149-7634(96)00049-8]
21. Luders E, Toga AW. Sex differences in brain anatomy. Progress in Brain Research. 2010; 186:3-12. doi: 10.1016/b978-0-444-53630-3.00001-4 [DOI:10.1016/B978-0-444-53630-3.00001-4]
22. Bruner E, de la Cuetara JM, Colom R, Martin-Loeches M. Gender-based differences in the shape of the human corpus callosum are associated with allometric variations. Journal of Anatomy. 2012; 220(4):417-21. doi: 10.1111/j.1469-7580.2012.01476.x [DOI:10.1111/j.1469-7580.2012.01476.x]
23. Sullivan EV, Rosenbloom MJ, Desmond JE, Pfefferbaum A. Sex differences in corpus callosum size: relationship to age and intracranial size. Neurobiology of Aging. 2001; 22(4):603-11. doi: 10.1016/s0197-4580(01)00232-9 [DOI:10.1016/S0197-4580(01)00232-9]
24. Leonard CM, Towler S, Welcome S, Halderman LK, Otto R, Eckert MA, et al. Size matters: cerebral volume influences sex differences in neuroanatomy. Cerebral Cortex. 2008; 18(12):2920-931. doi: 10.1093/cercor/bhn052 [DOI:10.1093/cercor/bhn052]
25. Allen LS, Richey MF, Chai YM, Gorski RA. Sex differences in the corpus callosum of the living human being. Journal of Neuroscience. 1991; 11(4):933-42. PMID: 2010816 [PMID]
26. Rauch RA, Jinkins JR. Variability of corpus callosal area measurements from midsagittal MR images: Effect of subject placement within the scanner. American Journal of Neuroradiology. 1996; 17(1):27-28. [PMID]
27. Ardekani BA, Bachman AH. Model-based automatic detection of the anterior and posterior commissures on MRI scans. Neuroimage. 2009; 46(3):677-82. doi: 10.1016/j.neuroimage.2009.02.030 [DOI:10.1016/j.neuroimage.2009.02.030]
28. Karakas P, Koc Z, Koc F, Gulhal Bozkir M. Morphometric MRI evaluation of corpus callosum and ventricles in normal adults. Neurological Research. 2011; 33(10):1044-049. doi: 10.1179/1743132811y.0000000030 [DOI:10.1179/1743132811Y.0000000030]
29. Poltana P, Poulpanich N, Withyachumnarnkul B, Suriyaprapadilok L, Inthisean P. No significant sexual dimorphism of the corpus callosum in Thai subjects: a study using stained plastinated brain slices. Science Asia. 2001; 27(4):203-09. doi: 10.2306/scienceasia1513-1874.2001.27.203 [DOI:10.2306/scienceasia1513-1874.2001.27.203]
30. Mourgela S, Anagnostopoulou S, Sakellaropoulos A, Gouliamos A. An MRI study of sex-and age-related differences in the dimensions of the corpus callosum and brain. Neuroanatomy. 2007; 6(1):63–65.
31. Suganthy J, Raghuram L, Antonisamy B, Vettivel S, Madhavi C, Koshi R. Gender- and age-related differences in the morphology of the corpus callosum. Clinical Anatomy. 2003; 16(5):396-403. doi: 10.1002/ca.10161 [DOI:10.1002/ca.10161]
32. Cowell PE, Allen LS, Zalatimo NS, Denenberg VH. A developmental study of sex and age interactions in the human corpus callosum. Developmental Brain Research. 1992; 66(2):187-92. doi: 10.1016/0165-3806(92)90079-c [DOI:10.1016/0165-3806(92)90079-C]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.