Volume 13, Issue 1 (Winter 2016 -- 2016)                   ASJ 2016, 13(1): 33-38 | Back to browse issues page

XML Print


Department of Anatomical Sciences, School of Veterinary Medicine, Kazerun Branch, Islamic Azad Univercity, Kazerun, Iran.
Abstract:   (2252 Views)

Introduction: We did this study because there were a few studies about aorto-branch junction.
Methods: Four light microscope and electron microscope study, the abdominal aorta, renal artery, and the adjoining right and left renal arteries were dissected out from 4 neonate dogs.
Results: Based on the results, there is only one cell type in the tunica intima of endothelium in both arteries. In abdominal aorta, there were open connective tissue spaces, containing elastic fibers between the internal elastic membrane and endothelium. In renal artery, endothelial cells were attached directly to the internal elastic membrane. In the abdominal aorta tunica media, layers of smooth muscle cells alternating with elastic lamellae were observed, but in renal artery, the smooth muscle cells were close to each other and a small quantity of collagen and elastic fibers were found between them. There were more dense bodies in the renal artery smooth muscle cells compared to the abdominal aorta. The adventitia of the both arteries consisted of scattered fibroblasts and elastic fibers in tunica adventitia of renal artery were more than those in abdominal aorta. There were 2 orientations of smooth muscle cells at the junction of renal artery; circular form in tunica media and longitudinal form in the outer part of tunica media and tunica adventitia and it was similar to the structure of muscular veins.
Conclusion: aorta and renal artery in neonate dogs show some differences. These differences presumably reflect adaptation to the function of these 2 arteries.

Full-Text [PDF 2811 kb]   (2410 Downloads)    
Type of Study: Original |
Received: 2015/10/12 | Accepted: 2016/01/2 | Published: 2016/02/1

References
1. Sheffield EA, Weller RO. Age changes at cerebral artery bifurcation and the pathogenesis of berry aneurysms. Journal of Neurological Science. 1980; 46(3):341-52. [DOI:10.1016/0022-510X(80)90059-3]
2. Mackinnon AD, Dunne J, Sitzer P, Buahler M, von Kegler SA, Markus HS. Rates and determinants of site-specific progression of carotid artery intima-media thickness: the carotid atherosclerosis progression study. Stroke. 2004; 35(9):2150-154. [DOI:10.1161/01.STR.0000136720.21095.f3] [PMID]
3. Bell J. The distribution of atheroma in the aorta. Irish Journal of Medical Sciences. 1935; 10(6):257-61. [DOI:10.1007/BF02957301]
4. Emura S, Masuko S, Sunaga T. Fine structures around the orifice of the intercostal artery of the rabbit thoracic aorta. Angiology. 1992; 43(1):211-18. [DOI:10.1177/000331979204300306] [PMID]
5. Roach MR. The structure and elastic properties of arterial junctions. Connective Tissue Research. 1986; 15(1-2):77-84. [DOI:10.3109/03008208609001976] [PMID]
6. Row AJ, Finlay HM, Canham PB. Collagen biomechanics in cerebral arteries and bifurcations assessed by polarizing microscopy. Journal of Vascular Research. 2003; 40(4):406-15. [DOI:10.1159/000072831] [PMID]
7. Junqueira LC, Carneiro J, Kelly RO. Basic histology (text and atlas). 11th ed. New York: McGraw-Hill Publication; 2005. [PMCID]
8. Toda T, Toda Y, Kummerow FA. Electron microscopic comparison of the tunica media of the thoracic aorta between species. Tohoku- Journal of Experimental Medicine. 1984; 143(2):141-47. doi: 10.1620/tjem.143.141 [DOI:10.1620/tjem.143.141]
9. Vodenicharov A, Cirnuchanov P. Microscopical and ultrastructural studies of the renal artery in domestic swine. Anatomia, Histologia, Embryologia. 1995; 24(4):237-40. doi: 10.1111/j.1439-0264.1995.tb00042.x [DOI:10.1111/j.1439-0264.1995.tb00042.x]
10. Gerrity RG, Cliff WJ. The aortic tunica intima in young and aging rats. Experimental & Molecular Pathology. 1972; 16(3): 382-402. doi: 10.1016/0014-4800(72)90012-3 [DOI:10.1016/0014-4800(72)90012-3]
11. Woezik HM, Klein HW, Silvis LM, Krediet P. Comparison of the growth of the tunica media of the ascending aorta, aortic isthmus and descending aorta in infants and children. Journal of Anatomy. 1983; 136(2):273-81.
12. Lindell SE, Olin T. Catheterization of the renal arteries in dog and cats. Acta Physiologica Scandinavica. 1958; 39(1):73-82. doi: 10.1111/j.1748-1716.1957.tb01410.x [DOI:10.1111/j.1748-1716.1957.tb01410.x]
13. Pease DC, Paule WJ. Electron microscopy of elastic arterie: the thoracic aorta of the rat. Journal of Ultrastructure Research. 1959; 3(4):469-83. [DOI:10.1016/S0022-5320(60)90023-X]
14. Moore DH, Ruska H. The fine structure of capillaries and small arteries. Journal of Biophysical & Biochemical Cytology. 1957; 253(3):457–62. [DOI:10.1083/jcb.3.3.457]
15. Parker F. An electron microscope study of coronary arteries. American Journal of Anatomy. 1958; 103(2):247-73. doi: 10.1002/aja.1001030206 [DOI:10.1002/aja.1001030206]
16. Mark JST. An electron microscope study of uterine smooth muscle. Anatomical Record. 1956; 125(3):473-93. doi: 10.1002/ar.1091250306 [DOI:10.1002/ar.1091250306]
17. Pease DC, Molinari S. Electron microscopy of muscular arteries; Pial vessels of the cat and monkey. Journal of Ultrastructure Research. 1960; 3(4):447-468. doi: 10.1016/S0022-5320(60)90022-8 [DOI:10.1016/S0022-5320(60)90022-8]
18. Ushiki T. Collagen fibers, reticular fibers and elastic fibers: a comprehensive undestanding from a morphological viewpoint. Archives of Histology & Cytology. 2002; 65(2):109-26. [DOI:10.1679/aohc.65.109]
19. Fourman JD, Moffat D. The blood vessels of the kidney. Edinburgh: Blackwell Scientific Publication; 1971. [PMID]
20. Kojimahara M, Ooneda G. Ultrastructural observations on bifurcations in rat cerebral arteries. Cell Pathology. 1980; 34(1):21-32. [DOI:10.1007/BF02892404]