Volume 12, Issue 4 (Autumn 2015 -- 2015)                   ASJ 2015, 12(4): 191-198 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Samanipour R, Salehi Rozveh H. A Review Study: Using Stem Cells in Cartilage Regeneration and Tissue Engineering. ASJ. 2015; 12 (4) :191-198
URL: http://anatomyjournal.ir/article-1-128-en.html
1- Department of Nuclear Engineering and Science, School of Basic Engineering, Islamic Azad University of Najafabad, Isfahan, Iran.
2- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
Abstract:   (2604 Views)

Articular cartilage, the load-bearing tissue of the joint, has limited repair and regeneration ability. The scarcity of treatment modalities for large chondral defects has motivated researchers to engineer cartilage tissue constructs that can meet the functional demands of this tissue in vivo. Cartilage tissue engineering requires 3 components: cells, scaffold, and environment.
Owning to their easy isolation, expansion, and multilineage differentiation, adult stem cells, specifically multipotential mesenchymal stem cells, are considered the proper candidate for tissue engineering. Successful outcome of cell-based cartilage tissue engineering ultimately depends on the proper differentiation of stem cells into chondrocytes and assembly of the appropriate cartilaginous matrix to achieve the load-bearing capabilities of the natural articular cartilage. Furthermore, multiple parameters such as growth factors, signaling molecules, and physical conditions must be considered. Adult mesenchymal stem-cell-based tissue engineering is a promising technology for creating a transplantable cartilage replacement to improve joint function.

Full-Text [PDF 667 kb]   (1440 Downloads)    
Type of Study: Review |
Received: 2015/07/17 | Accepted: 2015/10/5 | Published: 2015/11/1

References
1. Shea CM, Edgar CM, Einhorn TA, Gerstenfeld LC. BMP treatment of C3H10T1/2 mesenchymal stem cells induces both chondrogenesis and osteogenesis. Journal of Cellular Biochemistry. 2003; 90(6):1112-27. [DOI:10.1002/jcb.10734] [PMID]
2. Nochi H, Sung JH, Lou J, Adkisson HD, Maloney WJ, Hruska KA. Adenovirus Mediated BMP13 Gene Transfer Induces Chondrogenic Differentiation of Murine Mesenchymal Progenitor Cells. Journal of Bone and Mineral Research. 2004; 19(1):111-22. [DOI:10.1359/jbmr.2004.19.1.111] [PMID]
3. Coleman CM, Tuan RS. Functional role of growth/differentiation factor 5 in chondrogenesis of limb mesenchymal cells. Mechanisms of Development. 2003; 120(7):823-36. [DOI:10.1016/S0925-4773(03)00067-4]
4. Katayama R, Wakitani S, Tsumaki N, Morita Y, Matsushita I, Gejo R, Kimura T. Repair of articular cartilage defects in rabbits using CDMP1 gene-transfected autologous mesenchymal cells derived from bone marrow. Rheumatology. 2004; 43(8):980-5. [DOI:10.1093/rheumatology/keh240] [PMID]
5. Mastrogiacomo M, Cancedda R, Quarto R. Effect of different growth factors on the chondrogenic potential of human bone marrow stromal cells. Osteoarthritis and Cartilage. 2001; 9:36-40. [DOI:10.1053/joca.2001.0442]
6. Solchaga LA, Penick K, Porter JD, Goldberg VM, Caplan AI, Welter JF. FGF‐2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells. Journal of Cellular Physiology. 2005; 203(2):398-409. [DOI:10.1002/jcp.20238] [PMID]
7. Loughlin J, Dowling B, Chapman K, Marcelline L, Mustafa Z, Southam L, Ferreira A, Ciesielski C, Carson DA, Corr M. Functional variants within the secreted frizzled-related protein 3 gene are associated with hip osteoarthritis in females. Proceedings of the National Academy of Sciences of the United States of America. 2004; 101(26):9757-62. [DOI:10.1073/pnas.0403456101] [PMID] [PMCID]
8. Yano F, Kugimiya F, Ohba S, Ikeda T, Chikuda H, Ogasawara T, Ogata N, Takato T, Nakamura K, Kawaguchi H, Chung UI. The canonical Wnt signaling pathway promotes chondrocyte differentiation in a Sox9-dependent manner. Biochemical and biophysical research communications. 2005; 333(4):1300-8. [DOI:10.1016/j.bbrc.2005.06.041] [PMID]
9. Zhou S, Eid K, Glowacki J. Cooperation Between TGF-β and Wnt Pathways During Chondrocyte and Adipocyte Differentiation of Human Marrow Stromal Cells. Journal of Bone and Mineral Research. 2004; 19(3):463-70. [DOI:10.1359/JBMR.0301239] [PMID]
10. Fischer L, Boland G, Tuan RS. Wnt-3A enhances bone morphogenetic protein-2-mediated chondrogenesis of murine C3H10T1/2 mesenchymal cells. Journal of Biological Chemistry. 2002; 277(34):30870-8. [DOI:10.1074/jbc.M109330200] [PMID]
11. Mow VC, Ratcliffe A. Structure and function of articular cartilage and meniscus. Basic Orthopaedic Biomechanics. 1997; 2:113-77.
12. Langer R and Vacanti JP. Tissue engineering. Science. 1993; 260: 920–926 [DOI:10.1126/science.8493529] [PMID]
13. Kuo CK, Li WJ, Mauck RL, Tuan RS. Cartilage tissue engineering: its potential and uses. Current Opinion in Rheumatology. 2006; 18(1):64-73. [DOI:10.1097/01.bor.0000198005.88568.df] [PMID]
14. Li WJ, Mauck RL, Tuan RS. Electrospun nanofibrous scaffolds: production, characterization, and applications for tissue engineering and drug delivery. Journal of Biomedical Nanotechnology. 2005; 1(3):259-75. [DOI:10.1166/jbn.2005.032]
15. Mouw JK, Case ND, Guldberg RE, Plaas AH, Levenston ME. Variations in matrix composition and GAG fine structure among scaffolds for cartilage tissue engineering. Osteoarthritis and Cartilage. 2005; 13(9):828-36. [DOI:10.1016/j.joca.2005.04.020] [PMID]
16. Wakitani S, Goto T, Pineda SJ, Young RG, Mansour JM, Caplan AI, Goldberg VM. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. Journal of Bone and Joint Surgery of America. 1994; 76(4):579-92. [DOI:10.2106/00004623-199404000-00013]
17. Peterson L, Minas T, Brittberg M, Nilsson A, Sjögren-Jansson E, Lindahl A. Two-to 9-year outcome after autologous chondrocyte transplantation of the knee. Clinical Orthopaedics and Related Research. 2000; 374:212-34. [DOI:10.1097/00003086-200005000-00020]
18. Knutsen G, Engebretsen L, Ludvigsen TC, Drogset JO, Grøntvedt T, Solheim E, Strand T, Roberts S, Isaksen V, Johansen O. Autologous chondrocyte implantation compared with microfracture in the knee. Journal of Bone and Joint Surgery of America. 2004; 86(3):455-64. [DOI:10.2106/00004623-200403000-00001]
19. Barberi T, Willis LM, Socci ND, Studer L. Derivation of multipotent mesenchymal precursors from human embryonic stem cells. PLoS Medicine. 2005; 2(6):e161. [DOI:10.1371/journal.pmed.0020161] [PMID] [PMCID]
20. Butler DL, Goldstein SA, Guilak F. Functional tissue engineering: the role of biomechanics. Journal of Biomechanical Engineering. 2000; 122(6):570-5. [DOI:10.1115/1.1318906] [PMID]
21. Buschmann MD, Gluzband YA, Grodzinsky AJ, Hunziker EB. Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. Journal of Cell Science. 1995; 108(4):1497-508. [PMID]
22. Huang C, Charles Y, Hagar KL, Frost LE, Sun Y, Cheung HS. Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells. Stem Cells. 2004; 22(3):313-23. [DOI:10.1634/stemcells.22-3-313] [PMID]
23. Angele P, Yoo JU, Smith C, Mansour J, Jepsen KJ, Nerlich M, Johnstone B. Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro. Journal of Orthopaedic Research. 2003; 21(3):451-7. [DOI:10.1016/S0736-0266(02)00230-9]
24. Scherer K, Schünke M, Sellckau R, Hassenpflug J, Kurz B. The influence of oxygen and hydrostatic pressure on articular chondrocytes and adherent bone marrow cells in vitro. Biorheology. 2004; 41(3, 4):323-33.
25. Murphy CL, Polak JM. Control of human articular chondrocyte differentiation by reduced oxygen tension. Journal of Cellular Physiology. 2004; 199(3):451-9. [DOI:10.1002/jcp.10481] [PMID]
26. Wang DW, Fermor B, Gimble JM, Awad HA, Guilak F. Influence of oxygen on the proliferation and metabolism of adipose derived adult stem cells. Journal of Cellular Physiology. 2005; 204(1):184-91. [DOI:10.1002/jcp.20324] [PMID]
27. Vunjak‐Novakovic G, Meinel L, Altman G, Kaplan D. Bioreactor cultivation of osteochondral grafts. Orthodontics & Craniofacial Research. 2005; 8(3):209-18. [DOI:10.1111/j.1601-6343.2005.00334.x] [PMID]
28. Almarza AJ, Athanasiou KA. Design characteristics for the tissue engineering of cartilaginous tissues. Annals of Biomedical Engineering. 2004; 32(1):2-17. [DOI:10.1023/B:ABME.0000007786.37957.65]
29. Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. Development. 1966; 16(3):381-90.
30. Tuan RS, Boland G, Tuli R. Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Research and Therapy. 2003; 5(1):32-45. https://doi.org/10.1186/ar614 [DOI:10.1186/ar608] [PMID] [PMCID]
31. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999; 284(5411):143-7. [DOI:10.1126/science.284.5411.143] [PMID]
32. Sethe S, Scutt A, Stolzing A. Aging of mesenchymal stem cells. Ageing Research Reviews. 2006; 5(1):91-116. [DOI:10.1016/j.arr.2005.10.001] [PMID]
33. Murphy JM, Dixon K, Beck S, Fabian D, Feldman A, Barry F. Reduced chondrogenic and adipogenic activity of mesenchymal stem cells from patients with advanced osteoarthritis. Arthritis & Rheumatism. 2002; 46(3):704-13. [DOI:10.1002/art.10118] [PMID]
34. Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006; 24(5):1294-301. [DOI:10.1634/stemcells.2005-0342] [PMID]
35. Im GI, Shin YW, Lee KB. Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells?. Osteoarthritis and Cartilage. 2005; 13(10):845-53. [DOI:10.1016/j.joca.2005.05.005] [PMID]
36. Sakaguchi Y, Sekiya I, Yagishita K, Muneta T. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis & Rheumatism. 2005; 52(8):2521-9. [DOI:10.1002/art.21212] [PMID]
37. Heng BC, Cao T, Lee EH. Directing stem cell differentiation into the chondrogenic lineage in vitro. Stem Cells. 2004; 22(7):1152-67. [DOI:10.1634/stemcells.2004-0062] [PMID]
38. Barry F. Chondrogenic differentiation of mesenchymal stem cells from bone marrow:differentiation-dependent gene expression of matrixcomponents. Experimental Cell Research. 2001; 268: 189–200. [DOI:10.1006/excr.2001.5278] [PMID]
39. Sekiya I, Larson BL, Vuoristo JT, Reger RL, Prockop DJ. Comparison of effect of BMP-2,-4, and-6 on in vitro cartilage formation of human adult stem cells from bone marrow stroma. Cell and Tissue Research. 2005; 320(2):269-76. [DOI:10.1007/s00441-004-1075-3] [PMID]
40. Shirasawa S, Sekiya I, Sakaguchi Y, Yagishita K, Ichinose S, Muneta T. In vitro chondrogenesis of human synovium‐derived mesenchymal stem cells: Optimal condition and comparison with bone marrow‐derived cells. Journal of Cellular Biochemistry. 2006; 97(1):84-97. [DOI:10.1002/jcb.20546] [PMID]
41. Denker AE, Nicoll SB, Tuan RS. Formation of cartilage-like spheroids by micromass cultures of murine C3H10T1/2 cells upon treatment with transforming growth factor β1. Differentiation. 1995; 59(1):25-34. [DOI:10.1046/j.1432-0436.1995.5910025.x] [PMID]
42. Denker AE, Haas AR, Nicoll SB, Tuan RS. Chondrogenic differentiation of murine C3H10T1/2 multipotential mesenchymal cells: I. Stimulation by bone morphogenetic protein 2 in high density micromass cultures. Differentiation. 1999; 64(2):67-76. [DOI:10.1046/j.1432-0436.1999.6420067.x] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA code

Send email to the article author


Designed & Developed by : Yektaweb