Effects of Date Palm (Phoenix Dactylifera) Gemmule Extract on Morphometric Parameters of Reproductive Tissues, Hormones and Sperm Quality in Rat

Soghra Bahmanpour1*, Ferydoon Kavoosif, Tahereh Talaei3, Mohammad Reza Panjehshahin4

1. Anatomy Department, Shiraz University of Medical Sciences (SUMS), Shiraz, Iran.
2. Anatomy Department, Shiraz University of Medical Sciences, Shiraz, Iran.
3. Anatomy Department, Shiraz University of Medical Sciences, Shiraz, Iran.
4. Pharmacology Department, Shiraz University of Medical Sciences, Shiraz, Iran.

Introduction: Date palm gemmule has been used in traditional medicine to improve the semen quality and treat infertility. Their components remedies those are rich of antioxidant and vitamins can influence spermatogenesis. The aim of this project was to evaluate the effects of date palm gemmule water/alcoholic extract on reproductive tissues, sex hormone and sperm quality of rat.

Methods: Seventy male rats were divided into 7 groups. Five experimental groups were treated with zero, 50, 100, 150 and 200mg/kg/body weight of date palm gemmule water/alcoholic extract for 50 days. The controls was injected either busulfan or solvent. At the end of the experiment, blood samples were taken to perform hormone assay. The sperm samples were collected and count. The sperm motility and morphology were also measured. The smears were prepared and stained with acridin orange, aniline blue, eosin and chromycin A3. Morphometrical analyses were performed to measure the seminiferous tubule diameter and the thickness of epithelium of ductus deferens and epididymis.

Results: The results indicated estradiol decreased significantly in the group was fed with 50 mg/kg/body weight per day and testosterone decrease in the groups treated with 100 and 150 mg/kg/day of extract. The percent of the sperm with good morphology and normal chromatin histone were increased significantly in a non-linear way (P<0.05). The extract also significantly (P<0.05) increased in seminiferous tubule diameter and epididymis epithelium thickness.

Conclusion: In conclusion the components of extract improve the sperm chromatin quality as indicated by aniline blue staining and also the testis morphology and spermatogenesis as indicated by morphometric measurements and Johnson scoring technique respectively. Finally the results showed that the high dose of the extract showed the best protective effects against busulfan toxicity without decreasing in testosterone concentration in comparison to the other treated groups.”

Key Words: Phoenix Dactylifera Gemmule, Spermatogenesis, Testis, Hormones, Sperm Quality.

ABSTRACT

Introduction: Date palm gemmule has been used in traditional medicine to improve the semen quality and treat infertility. Their components remedies those are rich of antioxidant and vitamins can influence spermatogenesis. The aim of this project was to evaluate the effects of date palm gemmule water/alcoholic extract on reproductive tissues, sex hormone and sperm quality of rat.

Methods: Seventy male rats were divided into 7 groups. Five experimental groups were treated with zero, 50, 100, 150 and 200mg/kg/body weight of date palm gemmule water/alcoholic extract for 50 days. The controls was injected either busulfan or solvent. At the end of the experiment, blood samples were taken to perform hormone assay. The sperm samples were collected and count. The sperm motility and morphology were also measured. The smears were prepared and stained with acridin orange, aniline blue, eosin and chromycin A3. Morphometrical analyses were performed to measure the seminiferous tubule diameter and the thickness of epithelium of ductus deferens and epididymis.

Results: The results indicated estradiol decreased significantly in the group was fed with 50 mg/kg/body weight per day and testosterone decrease in the groups treated with 100 and 150 mg/kg/day of extract. The percent of the sperm with good morphology and normal chromatin histone were increased significantly in a non-linear way (P<0.05). The extract also significantly (P<0.05) increased in seminiferous tubule diameter and epididymis epithelium thickness.

Conclusion: In conclusion the components of extract improve the sperm chromatin quality as indicated by aniline blue staining and also the testis morphology and spermatogenesis as indicated by morphometric measurements and Johnson scoring technique respectively. Finally the results showed that the high dose of the extract showed the best protective effects against busulfan toxicity without decreasing in testosterone concentration in comparison to the other treated groups.”

* Corresponding Author: Soghra Bahmanpour, PhD
Anatomy Department, Shiraz University of Medical Sciences (SUMS), Shiraz, Iran.
Tel: 0098 711 2304372 / Fax: 0098 711 2304372
E-mail: bahmans@sums.ac.ir
1. Introduction

Thirty to fiftieth percent of couples are suffering from infertility [1]. Infertility is a major health problem. Treatment of infertility has been encountered with a lot of medical progression; however, the procedure varies depending largely on the approach availability in different country [2]. Therefore, it is essential to find non-invasive and natural methods to treat the male infertility. The use of the herbal remedies and their extraction are important customary methods.

For many years, it is believed a significant number of germ cell precursors do not mature and differentiate into the spermatozoa during spermatogenesis. Besides, several pathological processes can accelerate the loss of germ cells from the seminiferous epithelium [3]. Disorders characterized by poor semen quality can be reflected by seminiferous tubule failure [4].

Taking some remedies or adding them to the semen samples may improve sperm quality and it helps fertility in subfertile men. Red palm oil [5] and palm date pollen [6] has been reported to influence sperm parameters in rats. Palm date gemmule (Phoenix dactylifera) is one of remedies has been well known since ancient times and it was considered by the Egyptians as being a fertility symbol. In Iranian traditional medicine, it used to treat impotent. Thirteen flavonoid, as its ingredients were identified by liquid chromatography-electrospray ionization-tandem mass spectrometry [7]. It is a good source of natural antioxidants [8]. Flavenoid is the major class of phytoestrogen. It is functionally and structurally similar to estrogen [9] that affects spermatogenesis. Flavonoids also act as antioxidant [10]. Antioxidants can also protect testis [11, 12]. This component also protects sperm and is associated with semen quality as well [13]. The date palm gemmule with flavonoid content acts as antioxidant and sex hormone regulator. There is lack of evidence on the effects of date palm gemmule on spermatogenesis. Regards to these considerations, the objectives of this study were to determine the impacts of date palm gemmule supplementation on histopathological structure and hormone concentration of male reproductive tissues and sperm quality.

2. Materials & Methods

2.1. Animals

Seventy Spargue Dawley male rats (weighted 250-300 g and aged more than two months old) were selected and divided into 7 groups randomly. All rats acclimated to the lab condition for one week. They maintained under the standard condition (22°C, 12 h dark and 12 h light). Five groups were injected with single dose of 5 mg/kg body weight of busulfan intraperitoneally to induce partial sterility [14]. Two groups were not injected with busulfan and mentioned as controls.

2.2. Extract Preparation

Date palm gemmule extract were obtained through percolation methods. Fresh gemmules were obtained from P. dactylifera (Shahani) that grew in Jahrom, Fars, Iran and maintained in herbarium of Shiraz University with voucher number 40010. To obtain the water/alcohol extract, 150 g of date palm gemmule was grated and added 700 mL of 50% ethanol. The suspension was percolated for 72 hours. The solvent was dried under a vacuum. The final yield was 13.5 g dried powder [15,16]

2.3. Animal Feeding

Busulfan treated-groups were fed with 50, 100, 150 and 200 mg/kg/body weight per day of the extract respectively (G1-G4) a day after busulfan injection. The animal were fed the extract by gavage technique using a feeding needle. Feeding was been continuing for 50 days. The doses were chosen according to the study that was performed by Pritchett [17]. The fifth group (G5) was received only busulfan (Sham), the sixth group (G6) was treated with distilled water (Solvent) (negative control) and the seventh group (G7) had no treatment (non-treated control).

2.4. Blood Sampling

All experiments were performed in accordance with our center's guidelines for the ethical handling of animals. After fifty days at the end of experiment, the rats were anesthetized and blood samples were taken from abdominal aorta. Blood samples were centrifuged and their plasma was separated for measurement of hormones. The testosterone and estradiol plasma concentration were assessed by radioimmunoassay (RIA) kit, (Spectra, Finland) according to manufacturer's instruction

2.5. Sperm Sampling

Sperm samples were collected by cutting one centimeter of the cauda of the right ductus deferens. The piece of the ductus deferens was put in the Hank's balanced salt solution (HBSS) for 5 min. The sperms were swim into the HBSS. The number of the sperms was counted using
a hemocytometer slide [18]. A smear was prepared from each sample and selected ten field of the microscope slide assessed the sperm morphology randomly. The pattern of sperm motility in each field was observed [18].

2.6. Sperm Chromatin Assay

Sperm smears were stained with acridin orange (to assay DNA denaturation), aniline blue (to assay histone content of the sperm head) and chromomycin A3 (to assay protamine content of the sperm head). To evaluate the sperm morphology, the smears were stained with eosin as follow:

Acridine Orange (AO) (BDH, Chemical Ltd, Poole, England) tests assessed the DNA integrity or denaturation. The specimens were fixed with acetic alcohol, then stained and examined with a fluorescence microscope (Nikon, E800, Japan). AO intercalated with double-stranded DNA emits green fluorescence and single-stranded DNA emits red fluorescence. The percentage of the sperm nuclei with green and red colors were recorded and sperm with DNA denaturation was evaluated [19].

Aniline blue (Merck, Darmstadt, Germany) staining was used to assess the sperm nucleus histone. The smears were fixed with glutaraldehyde and stained with aniline blue. The sperms with extra histone showed different colors after staining. The sperm with light blue were recorded as normal histone and those with dark blue were the extra histone and abnormal ones. The percentage of intensity of different sperm colors was recorded for each sample [20].

Chromomycine A3 (CMA3) (Merck, Darm-15stadt, Germany) is used for the degree of protamine of the mature sperm. The smears were fixed with Carnoy and were stained with CMA3 solution in McElvin buffer [21]. The bright immature sperm was indicated as CMA3 positive and non-bright and mature sperm was the CMA3 negative sperm. For each sample, the percentage of CMA3 negative and positive has been recorded.

2.7. Histological Studies

In the day fifty, all rats were killed under deep anesthesia and the reproductive tissues were removed, weighed, fixed and processed histologically. The specimens were sectioned and stained with H&E. The sections were study under the light microscope. Spermatogenesis was assessed by the Johnsen scoring technique [22]. The thickness of the epididymis epithelium, ductus deferens epithelium and the seminiferous tubule diameter were measured by a light microscope equipped by a calibrated eye piece.

2.8. Statistical Analyses

The data were analysis by analysis of variance (ANOVA), Tukey and Kruscal-Wallis tests. All statistical analyses were done with SPSS v. 11.5 software for Windows and the data were graphed with Excel. A p value less than 0.05 considered as significant difference.

3. Results

3.1. Hormones Assay

Low dose (50 mg/kg) of the extract in the diet of the rats decreased in estradiol concentration in plasma significantly compared to the sham and negative control groups (P<0.05). Administration of 100 and 150 mg/kg of the extract showed a significant decrease in testosterone concentration in plasma compared to non-treated control. The data summarized in table 1.

<table>
<thead>
<tr>
<th>Group</th>
<th>Estradiol pg/mL</th>
<th>Testosterone ng/mL</th>
<th>Count (10⁶)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1 (50mg/kg + busulfan)</td>
<td>10.47± 4.67¥</td>
<td>2.18± 0.84</td>
<td>3.502677.54 ± 1.015</td>
</tr>
<tr>
<td>G2 (100 mg/kg + busulfan)</td>
<td>14.11± 4.28</td>
<td>2.15 ± 1.31*</td>
<td>7.630803.80 ± 7.87</td>
</tr>
<tr>
<td>G3 (150mg/kg + busulfan)</td>
<td>17.34 ±4.45</td>
<td>1.84 ±0.65*</td>
<td>6.721279.28 ± 1.15</td>
</tr>
<tr>
<td>G4 (200mg/kg + busulfan)</td>
<td>18.75± 3.70</td>
<td>3.02± 1.61</td>
<td>4.745172.98 ± 1.60</td>
</tr>
<tr>
<td>G5 (Busulfan)</td>
<td>20.61± 4.43</td>
<td>2.18± 1.20</td>
<td>5.9247551.35 ± 9.18</td>
</tr>
<tr>
<td>G6 (Distilled water)</td>
<td>18.98± 4.29</td>
<td>5.52± 3.36</td>
<td>4.795831.52 ± 1.05</td>
</tr>
<tr>
<td>G7 (Non-treated)</td>
<td>14.37 ±2.23</td>
<td>5.57 ± 4</td>
<td>7.143616/03± 1.4</td>
</tr>
</tbody>
</table>

* Significant Difference with control groups (P<0.05).
¥ Significant Difference with control groups (P<0.05).
3.2. Effects of the Extract on Weight

The mean of the body weight increased significantly after feeding the animals with the extract compared to the mean of the body weight at the beginning of the treatment. The mean of the testes weight was not different after feeding with the extract compared to the control groups. Administration of the 100, 200 and 150 mg/kg of the extract showed a significant increased in epididymis weight compared to the sham group (Fig 1).

3.3. Effects of the Extract on Sperm Parameters

Staining the sperms with eosin showed a significant increase in the mean of the percentage of the sperms with normal morphology in 100, 150 and 200 mg/kg treated-animals the compared to the negative control. The sperm count did not change significantly after extract administration (Table 1 and 2).

3.4. Effects of the Extract on Sperm Chromatin Quality

Acridin orange and chromycin A3 assays showed the percentage of sperms with normal DNA and protamine content did not change significantly after feeding the rats with the extract. However, administration of the extract (all doses) increased the percentage of the sperms with normal histone content compared to the sham, negative or non-treated control (Table 2).

Table 2. Effects of date palm gemmule on sperm chromatin in different group of rats (n=10)

<table>
<thead>
<tr>
<th>Group</th>
<th>Percentage of normal morphology (%)</th>
<th>Protamine content/ CMA3 staining (%)</th>
<th>Histone content/ Aniline blue staining (%)</th>
<th>Acridine orange staining DNA double strand (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1 (50mg/kg + busulfan)</td>
<td>95.14±2.73</td>
<td>100±0</td>
<td>100± 0+</td>
<td>100± 0</td>
</tr>
<tr>
<td>G2 (100 mg/kg + busulfan)</td>
<td>95.28±2.36*</td>
<td>100±0</td>
<td>100± 0+</td>
<td>100± 0</td>
</tr>
<tr>
<td>G3 (150mg/kg + busulfan)</td>
<td>95.33±1.93*</td>
<td>100±0</td>
<td>100± 0+</td>
<td>100± 0</td>
</tr>
<tr>
<td>G4 (200mg/kg + busulfan)</td>
<td>96.14±3.02*</td>
<td>100±0</td>
<td>100± 0+</td>
<td>100± 0</td>
</tr>
<tr>
<td>G5 (Busulfan)</td>
<td>91.30±3.4</td>
<td>100±0</td>
<td>97.20±0.91</td>
<td>100± 0</td>
</tr>
<tr>
<td>G6 (Distilled water)</td>
<td>94.14±1.46</td>
<td>100±0</td>
<td>98.28±1.38</td>
<td>100± 0</td>
</tr>
<tr>
<td>G7 (Non-treated)</td>
<td>94.50±2.67</td>
<td>99.66±0.70</td>
<td>97.25± 1.16</td>
<td>100± 0</td>
</tr>
</tbody>
</table>

* Significant difference with busulfan-treated group (P<0.05)
+ Significant difference with control groups (P<0.05)
3.5. Histopathological Study

Histological studies showed a slightly disturbed in spermatogenesis according to Johnsen scoring system in sham animals. Normal spermatogenesis was observed in all experimental groups that fed with the extract (Table 3). The statistical analyses revealed a significant improvement in the spermatogenesis in experimental groups compared to the sham groups.

3.6. Morphometric Study

Morphometric studies showed busulfan decrease seminiferous tubules diameter significantly compared to the seminiferous diameter of non-treated group. Administration of the extract led to a significant increase in the seminiferous diameter compared to those of busulfan-treated group (P<0.05). In busulfan-treated rats, the thickness of the epididymis epithelium was showed a significant decrease compared to those of control rats. In extract-treated rats, the thickness of the epithelium increased significantly compared to those of busulfan-treated group. There was no significant difference in the thickness of ductus deferens epithelium.

Histological structure of ductus deferens, epididymidis, seminal vesicle and prostate were normal in all groups.

4. Discussion

The beneficial nutritional value of date palm (Phoenix dactylifera) on health of human and animal have been claimed. Extract of date pollen increased the sperm count in rat and enhanced spermatogenesis, testosterone concentration and sperm chromatin quality.

Phoenix dactylifera contains minerals [23], flavonoid, glycosides [7], vitamins A and C, proteins and carbohydrates [24]. These contents may influence various biological effects on spermatogenesis. Flavonoids can act as agonist or antagonist of the estrogen [25-27]. There is a controversy in the effects of phytoestrogens in sperm quality. Some reports revealed no effects on spermatogenesis and the others showed a dose dependent decrease on sperm count [28-31]. The research showed the extract from plants such as kiwi contain flavonoids led to a decrease in testosterone level [32]. On the other hand, cartamus extract, another flavonoid containing plant, increase testosterone level. The flavonoids can interrupt hypophysial/gonadal axis and by this way influence testosterone and also spermatogenesis. Date palm gummule with its hormonal interrupters may change the hypophysial/gonadal axis and by this way impact on testosterone. Despite of reduction in testosterone level, date palm gummule did not impact on sperm count. The extract led to an increase in epididymis weight. Estrogen can regulated the absorption of the fluid in epididymis. Estrogenic effect of the flavonoid may dilute the sperm count in epididymis by prevention of fluid absorption [33]. Therefore, in spite of minimal change in sperm count after extract administration, the epididymis weight gain was occurred.

<table>
<thead>
<tr>
<th></th>
<th>Ductus deferens epithelium thickness (µm)</th>
<th>Seminiferous tubules Diameters (µm)</th>
<th>Epididymis epithelium thickness (µm)</th>
<th>Johnson’s Scoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1 (50mg/kg + busulfan)</td>
<td>3.45 ± 0.11</td>
<td>17.35 ± 0.54¥</td>
<td>2.3 ± 0.04</td>
<td>9.8 ± 0.05</td>
</tr>
<tr>
<td>G2 (100mg/kg + busulfan)</td>
<td>3.58 ± 0.18</td>
<td>17.98 ± 0.33¥</td>
<td>2.33 ± 0.07</td>
<td>9.9 ± 0.03</td>
</tr>
<tr>
<td>G3 (150mg/kg + busulfan)</td>
<td>3.15 ± 0.16</td>
<td>17.98 ± 0.31¥</td>
<td>2.31 ± 0.04</td>
<td>9.86 ± 0.02</td>
</tr>
<tr>
<td>G4 (200mg/kg + busulfan)</td>
<td>3.61 ± 0.1</td>
<td>17.34 ± 0.17¥</td>
<td>2.38 ± 0.04</td>
<td>9.94 ± 0.02</td>
</tr>
<tr>
<td>G5 (Busulfan)</td>
<td>3.13 ± 0.24</td>
<td>15.78 ± 0.39</td>
<td>1.71 ± 0.01+</td>
<td>9.41 ± 0.05</td>
</tr>
<tr>
<td>G6 (Distilled water)</td>
<td>3.75 ± 0.22</td>
<td>17.68 ± 0.2*</td>
<td>2.22 ± 0.05</td>
<td>9.95 ± 0.02</td>
</tr>
<tr>
<td>G7 (Non-treated)</td>
<td>3.65 ± 0.1</td>
<td>21.78 ± 0.44</td>
<td>2.2 ± 0.05</td>
<td>9.95 ± 0.02</td>
</tr>
</tbody>
</table>

*Significant difference with non-treated control (P<0.05)
¥ Significant difference with busulfan-treated group (P<0.05)
+ Significant difference with all other groups (P<0.05)
Date palm gemmule may exert its effect on spermatogenesis by vitamins content. Dates contain at least six vitamins including a small amount of vitamin C, and vitamins B1 (thiamine), B2 (riboflavin), nicotinic acid (niacin) and vitamin A [24]. Vitamin C is one of the antioxidants that present in the semen and use as ROS scavenger in vitro and in vivo [34-36]. Flavonoids are also ROS scavenger as well. The antioxidative effect is mainly due to phenolic components, such as flavonoids [37], phenolic acids, and phenolic diterpenes. The antioxidant activity of phenolic compounds is a result of their redox properties, which can play an important role in absorbing and neutralizing free radicals, quenching singlet and triplet oxygen, or decomposing peroxides [38]. Recent studies indicate that the aqueous extracts of dates have potent antioxidant activity [8]. A negative correlation has been shown between the ROS concentration and spermatogenesis [39]. The presence of the antioxidant such as vitamin C, A and also flavonoids in date palm gemmule extract may have a protective role in spermatogenesis.

The presence of vitamin A for the normal progression of male germ cell differentiation has been known for many years [40]. Vitamin A has been demonstrated to improve nucleoprotein change during spermiogenesis [41]. Our data suggested a decrease in the percentage of the sperm with normal histone content. Palm gemmule can improve histone exchange during protamination. Sperm morphology can be improved by intraperitoneal injection of vitamin C [42]. Our data also indicate improvement in sperm morphology and chromatin quality by feeding the animal with the extract.

Date palm has protective effects on induced hepatotoxic liver in rat [43]. The vitamin C content of the date palm also protects the liver against toxins [24]. In the same way, the date palm contents may protect the seminiferous tubules against busulfan toxicity as indicated by Johnstone scoring system.

In conclusion, the date palm gemmule extract can improve the spermatogenesis. The high dose of the extract showed the best protective effects against busulfan toxicity without decreasing in testosterone concentration in comparison to the other treated groups. However, the exact mechanism of the effect is unknown and need more investigation.

Acknowledgment

The authors wish to thanks the research deputy of Shiraz University of Medical Science for offering the grant and Mr. Masoodi for technical support.

References

16. Lee OS, Kang HH, Han SH. Oriental herbs in cosmetics: Plant extracts are reviewed for their potential as cosmetic ingredients. Cosmet Toiletr 1997; 112:57-64.


